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Abstract 

Asthma is a common chronic airway disease worldwide. Recent studies findings 

suggested that asthma is not a single disease entity, but it is a syndrome that characterised 

shortness of breath, intermittent attack, cough and wheezing. The disease onset 

commonly occurred during childhood. The natural history of asthma is variable and the 

disease not restricted to children, also it affects adults and both gender. Asthma 

pathogenesis is a complex scenario interplay of sequences of inflammation, immune 

responses, and airway remodelling. Thus the disease presented with different phenotypes 

and endotypes which are with variable treatment outcomes. The chronic inflammation is a 

main corner stone of asthma pathogenesis during attack and during asymptomatic course. 

The inflammation and immune responses are induced by the inhaled allergens and 

multiple host cells are involved in asthma pathogenesis. In this review we present the role 

of eosinophils, basophils and neutrophils in pathogenesis of asthma. 

Keywords: Asthma, eosinophil, basophil, neutrophil. 

 

1. Introduction 

Asthma is a common chronic airway disease worldwide [1,2].Asthma is not a 

single disease entity, but it is a syndrome that characterised by shortness of breath, 

intermittent attack, cough and wheezing. The disease onset commonly occurred during 

childhood [3]. The natural history of asthma is variable and the disease not restricted to 

children, also it affects adults and both gender [3]. Asthma pathogenesis is a complex 

scenario interplay of sequences of inflammation, immune responses, and airway 

remodelling. [4,5] 
The chronic inflammation is a main corner stone of asthma pathogenesis during 

attack and during asymptomatic course [6]. The inflammation and immune responses are 

induced by the inhaled allergens, that include house dust mite, moulds, grasses, pollen, 

animal dander, and trees [7,8] 
After the induction phase of the disease, there is possibility of remission or course 

chronicity with intermittent attacks which lead to smooth muscle hypertrophy, epithelial 

mucus metaplasia,  and glycoprotein deposition in the sub-epithelial matrix [6]. When 

allergens come in contact with mucus and epithelial barriers penetrate these barriers and 

induce cytokines that induce subsequent events. Viral infections is a major risk factor for 
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asthma induction mainly in atopic individuals [9]. Chronic inflammation in asthma was 

initiated and driven by interplay of innate immune response, adaptive immune response 

and respiratory epithelium [10]. 

2. Asthma phenotypes and endotypes 

Asthma is not a single entity and it is a heterogenic syndrome. Asthma is defined as a 

''collection of several distinct diseases (endotypes) and varying phenotypes (young atopic, 

obese middle aged and elderly), all of which manifest with symptoms of wheezing and 

shortness of breath to cough and chest tightness and accompanied by variable airflow 

obstruction''[11].Table 1. Shows the endotypes and phenotypes. 

 

Table 1. Asthma endotypes and phenotypes. [11]. 

 
Endotype Phenotype  Clinical features Molecular 

mechanism 

Biomarkers  Natural 

history 

T2 high Atopic  Early onset, well 

defined, steroid 

sensitive 

Allergic 

sensitisation  

Blood/sputum 

eosinophils 

count, serum 

specific allergen 

IgE, high 

FeNO, high 

total IgE 

Identifiable 

and treatable, 

preserved 

lung function 

Late onset ± concomitant 

CRSwNP, 

steroid 

refractory 

Staphylococcus 

aureus enterotoxin 

Blood/sputum 

eosinophils 

count, high 

FeNO, 

Severe from 

onset, more 

frequent 

exacerbation 

AERD Adult onset Dysregulated 

arachidonic acid 

metabolism 

Blood/sputum 

eosinophils 

count, urinary 

LTE4 

Severe from 

onset, more 

frequent 

exacerbation 

Non-T2 Non-atopic  Adult onset, 

paucigranuocytic 

or neutrophilic 

NLRP3/IL-1ß, 

altered micro-RNA 

expression, Th17 

Induced sputum 

neutrophil 

count, MMP-9 

in Bal 

Variable 

course and 

lung function 

Smokers Older adult  Oxidative stress, 

mixed Th2 high 

Th2 low 

Induced sputum 

neutrophil 

count 

More 

frequent 

exacerbation, 

low lung 

function 

Obesity 

related  

Female sex Oxidative stress, 

neutrophils, 

increased innate 

immune activation,  

Serum IL-6 Severe 

symptoms, 

preserved 

lung function 

Elderly  >50 to > 65 years 

at onset 

Immunosenescence, 

Th1/Th17 

inflammation 

Induced sputum 

neutrophils 

count 

Steroid 

resistant 

CRSwNP= Chronic rhinosinusitis with nasal polyp 

FeNO= Fractional excretion of Nitric Oxide 

 

3. Eosinophils role in induction of inflammation in asthma 

         The role of eosinophils in pathogenesis of asthma was reviewed in last decade [12-15]. 

The measurement of the inflammation of airway that was induced by eosinophils can be 

achieved invasively by bronchoscopic sampling or non-invasive sputum analysis [13]. 

Sputum and bronchoalveolar lavage examined for eosinophils counts, cytology, FeNO, 

eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil  peroxidase, and major 
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basic protein. Eosinophil recruitment from blood to tissue required eosinophils activation [16-

18]. Allergic diseases including asthma were associated down-regulation or up-regulation of 

surface eosinophils proteins and Fc receptors or integrins activation [16-19]. Eosinophils 

surface proteins such as CD44, CD45RO, CD48, CD137, CD89, CD16, IL-2Rα, IL-17RA, 

CD25, IL-17RB, regulated in asthma and involved in disease pathogenesis [16, 20,21].  

         The eosinophils surface proteins that serve as a target for therapy in asthmatic patients 

include activated ß2 integrin, CD162, CD125, CD25,  CD18, CD11a, and CD11b [16,21]. 

However, eosinophils express several inhibitory receptors [22]. 

The mediators that were released by eosinophils had the capacity for induction of airway 

hyperresponsiveness [15]. Human eosinophils major basic proteins and eosinophils 

peroxidase induced airway hyperresponsiveness (AHR) in animal models [23,24]. However, 

eosinophils cationic proteins and eosinophils-derived neurotoxins did not [23]. The 

mechanism by which AHR was induced by bradikinin production [24]. In addition, major 

basic proteins cause histamine release by basophils and mast cells [25,26]. 

         Eosinophils count in sputum and bronchoalveolar lavage fluid  was lower in none 

asthmatic as compared to asthmatic subjects [27]. Th2 cytokines expression like IL-5 as an 

indicator of eosinophilc inflammation increased in bronchoalveolar lavage fluid from asthma 

patients [28]. Eosinophilia of blood correlated with asthma exacerbation frequency and 

severity [27,29], however, there was none eosinophils asthma phenotype and presence of 

other causes for peripheral eosinophilia [30,31]. Several cytokines such as IL-13 produced by 

eosinophils and thus IL-13 lead to AHR and induce mucus secretion [24]. Th2 cells and 

ILC2s also produced IL-13. In addition, eosinophils produced leukotrienes which induce 

AHR [32].   

          Eosinophils development from CD34+ hematopoietic progenitor cells were promoted 

by IL-5, IL-3 and granulocyte-macrophage colony stimulating factor, however, only IL-5 was 

specific for eosinophils development [12]. Proinflammatory mediators are produced by 

eosinophils which included eosinophils cationic proteincytokines and newly synthesised   

eicosanoids [33-35]. Previous studies [12-15]suggested that eosinophils play a role in asthma 

pathogenesis through release of mediators,  cytokines and chemokines  such as MBP, ECP, 

EDN,EPO, galectin-10, LTC4, PEG2, platelet-activating  factor, thromboxane, TGF-ß, IL-3, 

IL-4, IL-5, IL-8,IL-10, IL-12, IL-13, IL-16, IL-18, TNF-α, CCL5 and CCL11. Airway 

remodelling was a potential change that was caused by eosinophils inflammation induction 

and release of fibrogenic mediators and multiple growth factors such as transforming growth 

factor (TGF-ß),  matrix metalloproteinase-9, tissue inhibitor of mettaloproteinase-1, vascular 

endothelial growth factor, basic fibroblast growth factor, angiogenin, MBP, ECP, IL-17, IL-

13, heparin-binding epidermal growth factor, nerve growth factor, cystinyl leukotrines, and 

stem cell factor [36-55]. In asthma exacerbation, eosinophila of the airway was the early 

feature [56]. In addition, eosinophils released cytokines were responsible for induction of 

various immunomodulation in asthma patients [26,57-70]. Fig1. Illustrate the role of 

eosinophils in asthma pathogenesis. 

4. Basophils role in induction of inflammation in asthma 

       Recent studies indicated that basophils play a potential role in induction of allergic 

inflammation  in both IgE dependent and none-dependent. [71]. Basophils migrated to the 

site of allergic inflammation and secreted chemokines, proteases and cytokines [12]. The 

mediators that were produced by basophils divided in to cytokines/chemokines, preformed 

mediators, and newly synthesised lipid mediators [72]. In allergic inflammation basophils 

induced its effect through histamine that is stores in granules, rapid production of LTC4, 

LTD4, and LTE4 which cause bronchoconstriction and increase vascular permeability 

[12,14].  



AAJMS [Formerly IJMS] May 2021;4(2): 3-21;ISSNe 2522-7368.                                                       
DOI: http://doi.org/10.32441/aajms.4.2.2 

 

6 
 

        Activated basophils expressed cytokines such as GM-CSF, IL-13 and IL-4, but IL-4 was 

secreted  by activated basophils in high concentration and rapid response [12]. In animal 

model, basophils production of none mediated IgE IL-4 was the early differentiation of Th2 

[73]. IgE synthesis amplification under the control of expression of IL-13, IL-4 and CD154 

by basophils [12]. A novel mediator, granzyme B (protease) was secreted in asthma 

following challenge with inhalation allergens [74]. The predominant source of IL-4 in 

allergen activated polymorphonuclear cells and in mouse models [12]. Post-mortem studies 

on patients die due to asthma show increased number of basophils in lung tissue [73,75-77].        

Studies in animal models suggested that basophils play direct role as antigen presenting cell 

that lead to Th2 responses induction, IL-4and MHC class II molecule expression [78-80]. 

CD63 and CD203C are the well-described human basophils activation markers [81-83]. 

Similar up-regulation exhibited by CD107a, CD164 and CD13 [84].  Identification of 

basophils can be achieved by expression of CCR3, CD123, or CRTH2 cell surface markers 

[82,83]. Additionally, basogranulin was a the specific basophils marker [85] and secreted 

after both non- IgE and IgE- mediated stimuli [86]. Basophils identification in tissue can be 

done using immunohistochemical technique to detect basogranulin as specific marker [87]. 

5. Neutrophils role in induction of inflammation in asthma 

          Neutrophilic asthma is one of the refractory asthma phenotype, which characterised by 

course severity, fixed obstruction of the airway, poor response to treatment and frequent 

exacerbation  [88-91]. Neutrophilic asthma was not fully understood phenotype, however, 

this phenotype was complex and form about 30-50% of symptomatic asthma [92]. Obesity, 

gastrointestinal  reflux disease, respiratory infections, and obstructive sleep apnoea were 

associated with neutrophilic asthma [93]. 

         Better outcomes of severe asthma treatment were achieved recently by the phenotypes 

characterization which contribute to personalized therapy of asthma through the development 

of novel biologics [88,92,94,95,96,97]. Th2 driven eosinophic asthma in about 50% of 

asthma cases, while the remaining half were none eosinophils asthma phenotypes and were 

subdivided into paucigranulocyte and neutrophilc subtypes [94,95,98].  

         Phenotype of neutrophilic asthma was less well defined [99,100], while the eosinophils 

asthma phenotype was well defined [96,98-105]. Neutrophilic asthma pathophysiology was 

complex. High neutrophils count in sputum from neutrophilic asthma in 40-76% of sputum 

cells [99,100,106] and less sputum eosinophils count [95,104]. Presence of high number of 

neutrophils in sputum was associated with persistant asthma severity [88,95,97,106,107], low 

FEV1 [108] and fixed airway obstruction [106,108,109]. Exacerbation was more frequent in 

neutrophilic asthma phenotype, but the severity was less than that in eosinophilic phenotype 

[110-113].  

         Neutrophilic asthma was characterised by nocturnal worsening which associated with 

high number of BAL  granulocytes [114] and this guide the treatment of cases [115]. 

Neutrophilic asthma was with poor prognosis, worse quality of life, none responsive to high 

dose of inhaled corticosteroids and newly developed biologic therapy [88-90,97,102,108,116-

122]. 

         To date, there was no specific biomarkers for neutrophilic asthma diagnosis, however, 

the phenotype was adult onset, mainly not atopic, and with bronchoprovacation test weak 

responsiveness to methacholine [103,108,123-125].   Innate immune response alteration and 

Th17 cells activation drive the neutrophilic asthma [126-128]. IL-17A and IL-17F were play 

a potential role in neutrophilic asthma pathogenesis and neutrophilic inflammation. However, 

other cytokines and chemochines such as TGF-ß, TNF-α, IL-1ß, IL-23, IL-8 and IL-6 which 

act with IL-17A in induction of neutrophilic inflammation in severe cases [129-132]. 
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         Pathogens elimination from the airway was done by neutrophils. But persistent 

neutrophilia and protease secretion will lead to airway injury, hypersecretion of mucus, and 

airway obstruction and remodelling [133].  Neutrophils recruitment to lung tissue in asthma 

patients and induce neutrophilic inflammation include the following cytokines, lipids, 

chemokines and complements: IL-1α, IL-1ß, IL-1Ra, IL-6, IL-10, IL-17, IL-23, INF-γ, TNF-

α, LTB4, Lipoxin A4, Resolvin D1/E1, PGD2, CXCL1, CXCL5, CXCL6, CXCL8, C5a, and 

FMLP [134-163]. However, IL-1Ra, IL-10, Lipoxin A4, Resolvin D1/E1, and PGD2 were 

decreased while others were increased. The most potent neutrophils chemoattractant  in the 

lung was CXCL8 [164] and was increased in asthmatic nasal secretions and sputum 

[165,166]. Asthmatic patients neutrophils express the high affinity IgE receptor (FcsR1) 

which induct release of CXCL8 from neutrophils [167]. It was suggested that Th17, Th1 and 

neutrophils form a network communication in airway and cause severe attack that refractory 

to corticosteroids [133]. 

         In asthma patients, neutrophils form the first line defense mechanism against pulmonary 

infection [168], however, it release mediators that attract macrophages/monocytes to 

infection site [169].Additional side effects were excerted by neutrophils and cause mucus 

hypersecretion, and airway obstruction, airway smooth muscle responsiveness increase, and 

airway remodelling [170-172]. Studies in children and adults with asthma not confirmed the 

association between neutrophilic inflammation and airway remodelling [173,174]. 

Persistence of neutrophils in airway of asthma patients may be contributed to that 

corticosteroids inhibition of neutrophils apoptosis [175-178],release of ATP from dying cells 

[179-181], LTB4 inflammatory mediators [182], and pathogen-induced mechanisms [183]. 

6. Mast cells role in induction of inflammation in asthma 

        Mast cells activation as a response to IgE antigen binding receptor with Th2 cell 

activation initiate the chronic inflammation in asthma [184]. Mast cells contain high affinity 

IgE receptors and localised in connective tissue and mucosal membrane and blood vessels 

[185]. Mast cells play a potential key role in induction of inflammation and modulation of 

production of mediators and activated by cytokines, viral and bacterial antigens, hormones 

and growth factors [186]. Local production of monocytes/mast cells (MCP-1 and RANTES) 

chemotactic factors lead to accumulation of mast cells in inflamed tissues [187].  

         Mast cells with two phenotypes, the mucosal mast cells and tissue mast cells [188]. 

Tissue mast cells contain chymase and tryptase, while mucosal mast cells contain tryptase 

only, additionally, both phenotypes were differ in their number, secretary granules type and 

stimuli responsiveness [188]. Mucosal mast cells contain more chondroitin, while tissue mast 

cells contain heparin and responded to neuropeptides while mucosal mat cells not respond 

[188]. 

          Mast cells play a role in asthma pathophysiology [189], and mast cells express many 

receptors such as CD117, Fc€R1, CD32a, CD64, PGE2 receptors, C3a and C5a receptors, 

adenosine receptor, ß2 adrenergic receptor, IL-10R, IL-9R, IL-5R, IL-4R, IL-3R, IFN-γR, 

GM-CSFR, CXCR4, CXCR2, CCR5, CCR3, Toll-like receptor, and nerve growth factor 

receptor  [190-192]. Mast cells release or generate PGD2, platelets activating factor, 

histamine, leukotrines, and others as a immediate inflammation responses [193]. The above 

mediators induce spasmogenic and vasoactive action in asthmatic patients.  

        Proinflammatory cytokines such as IL-8, IL-6, IL-1 and TNF-α which are innate 

immunity important factors and mast cells the only cells that release  preformed TNF-α 

[194].Theoharides et al [195] reported that asthma worsen by stress, a process that mediated  

by mast cells activation that infiltrate bronchial smooth muscle and cytokines secretion. IL-9 

target mast   cells and expanded the population of mast cells [196]. Independent of IgE, mast 

cells activated by IL-18 and produce histamine and Th2 cytokines [197]. Several 
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inflammatory cells were detected in bronchial biopsy and BAL including mast cells [198]. 

Mast cells synthesise IL-17 in response to signals through TLR9, TLR7, TLR4, TLR3, TLR2, 

and TLR1 [199]. IL-33 augmented the release of vascular endothelia growth by mast cells in 

response to substance P [200]. Mast cells participation in asthma development is through 

surface high affinity receptors for IgE cross-linking which lead to production of 

proinflammatory and vasoactive materials [184]. 

        Mast cells released mediators that were classified into cytokines/ chemokines, newly 

synthesized lipid mediators, and preformed mediators [12], however, this categorization not 

absolute as that TNF-α included in newly synthesized and preformed mediators. The 

preformed mediators include tryptase, chymase, histamine, proteoglycans  (heparin and 

chondroitin sulphates) carboxypeptidase A and their storage was in cytoplasmic granules 

[12]. These mediators play a role in the pathophysiology of asthma [14]. 

         KIT (CD117) and Fc€R1activated mast cells and contribute to rapid synthesis of 

eicosanoid mediators from arachidonic acid that was stored in endogenous membrane and 

subsequent synthesis of cysteinyl leukotrienes which induce bronchoconstriction, attract 

eosinophils, mucus production induction and initiate vascular permeability. PGD2 as newly 

synthesized mediators induce basophils and eosinophils attraction and bronchoconstriction 

[12]. Additionally, TNF-α stored and produced by mast cell and cause increase in 

hyperresponsiveness and upregulation of epithelial and endothelial adhesion molecules. Also 

mast cells release other cytokines (such as GM-CSF, IL-3, IL-5, IL-13, 1L-10, IL-6) and 

chemokines [CCL3, CXCL8 (IL-8)] [190-192]. 

         Based on animal studies it was suggested that mast cells to play function in adaptive 

immunity, innate immunity, and homeostasis [12]. 

Allergic diseases (asthma, allergic rhinitis and anaphylaxis) pathogenesis central action was 

the activation of mast cells through  Fc€R1 [12]. Atopic asthma specificity is the Fc€R1 

expression robust upregulation on nasal and alveolar mast cells and the changes of alveolar 

mast cells  skewed toward Th2 profile that was correlated with clinical outcome [201,202]. 
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Fig.1. Eosinophils role in asthma pathogenesis [15] 
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