Main Article Content

Sara Musbah Mohammed sara.22esp4@student.uomosul.edu.iq
Raad Hassani Sultan dr.raadsultan@uomosul.edu.iq


Abstract

Six native rhizobial isolates from various cultural zones in Ninavah-Governate, Iraq, were used in this investigation. The following rhizobial strains were isolated from leguminous plant root nodules: Rhododendron japonicum SM29 from Glycin max L., Rhizobium leguminosarum bv. trifolii SM35 from Trifolium alexanrinum L., Rhizobium leguminosarum bv. viciae SM10 from Vicia faba L., Ensifer ferdii bv. Fredii SM13 from Vigna unguiclata L., Ensifer meliloti SM28 from Medicago sativa L., and Rhizobium leguminosarum bv. phaseoli SM42 from Phaseolus vulgaris L. Rhizobial bacteria were identified by the spherical, clear colonies seen after cultural investigation. Methyl red and Voges-Proskuar biochemical tests yielded negative results, but urease, catalase, indole, starch, Congo red, citrate, and motility tests yielded positive results. A high tolerance was found by the KNO3 tolerance test.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mohammed, S. M., & Sultan, R. H. (2024). Effect of Some Environmental Factors and Antibiotics on the Growth of Different Species of Rhizobium. Al-Kitab Journal for Pure Sciences, 8(02), 109–119. https://doi.org/10.32441/kjps.08.02.p9
Section
Articles

References

Souza, M. C. O., Cruz, J. C., Cesila, C. A., Gonzalez, N., Rocha, B. A., Adeyemi, J. A., Nadal, M., Domingo, J. L., and Barbosa, F. Recent trends in pesticides in crops: A critical review of the duality of risks and benefits and the Brazilian legislation issue. Environ. Res. 2023; 115811.

Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Xavier, D., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. New weed control opportunities: development of soybeans with the Roundup Ready TM gene. In Herbicide-Resistant Crops, 53–84. (CRC Press, 2018).

Stalker, D. M., Kiser, J. A., Greg, B., Bruce, C., and Houck, C. M. Cotton weed control using the BXNTM system. In Herbicide-Resistant Crops, 93–106. (CRC Press, 2018).

Tudi, M. et al. Agriculture development, pesticide application, and its impact on the environment. Int. J. Environ. Res. Public Health. 2021;18 (3): 1112.

Pimentel, D. Amounts of pesticides reaching target pests: Environmental impacts and ethics. J. Agric. Environ. Ethics. 1995; 8: 17–29.

Richmond, M. E. Glyphosate: A Review of its Global Use, Environmental Impact, and Potential Health Effects on Humans and Other Species J. Environ. Stud. Sci. 2018; 8: 416-434.

Ruuskanen, S., Fuchs, B., Nissinen, R., Puigbò, P., Rainio, M., Saikkonen, K., Helander, M. Ecosystem consequences of herbicides: the role of the microbiome Trends Ecol. Evol. 2023

Harries, M., Flower, K. C., Scanlan, C. A., Rose, M. T., and Renton, M. Interactions between crop sequences, weed populations, and herbicide use in Western Australian broadacre farms: Findings of a six-year survey. Crop Pasture Sci. 2020; 71(5): 491–505.

Badowski, M. & Sadowski, J. Poziom pozostalosci 2, 4-Dw roslinach trwalych uzytkow zielonych. Prog. Plant Prot. 2008; 48(4): 1185–1189.

Singh, S. et al., Herbicide glyphosate: Toxicity and Microbial Degradation. Int. J. Environ. Res. Public Health 2020; 17(20): 7519.

Sharma, S., Kumar, S., Kumar, V., and Sharma, R. Pesticides and vegetables: Ecological and metabolic fate with their field and food significance. Int. J. Environ. Sci. Technol. 2021; 1–26.

Drouin, P., Sellami, M., Prevost, D., and Fortin, J. Antoun, H. Tolerance to agricultural pesticides of strains belonging to four genera of Rhizobiaceae. J. Environ. Sci. Health Part B. 2010; 45(8): 757–765.

O’Brien, J.; Wright, G.D. An ecological perspective of microbial secondary metabolism. Curr. Opin. Biotechnol. 2011, 22, 552–558.

Okada, B.K.,Seyedsayamdost, M.R. Antibiotic dialogues: Induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 2017, 41, 19–33.

Shahriar, A., Kobra, A. T., Shomi, F. Y., Emran, T. B., Mallick, J., & Dutta, M. Presumptive correlation between phenotypic, genotypic and symbiotic diversities with antibiotic susceptibility traits of rhizobial strains from plant legumes. environment, 2020, 18, 19.‏

Vincent, J. M. A. Manual for the Practical Study of the Root Nodule Bacteria. I. B. P. Handbook No. 15 Oxford: Blackwell Scientific Publication, Oxford, 1970, p. 113–131.

Baghel, D., Gupta, S.B., & Chowdhury, T. Characterization and Evaluation of Native Rhizobium of Groundnut (Arachis hypogaea L.) and Soybean (Glycine max L.). Journal of Experimental Agriculture International, 2024, 46.5: 500-506.

Mahon, C. R., Lehman, D. C., and Manuselis, G. Textbook of Diagnostic Microbiology-e-Book. Elsevier Health Sciences 2018.

Pervin, S., Jannat B., Sanjee, S., and Farzana, T. Characterization of rhizobia from the root nodule and rhizosphere of Lablab purpureus and Vigna sinensis in Bangladesh. Turkish J. of Agri-Food Sci. Tech. 2017; 5(1): 14–17.

Collee, J. G., Marmion, B. P., Fraser, A. G., Simmons, A. Mackie, and McCarteny, Practical Medical Microbiology. 14th ed., Chrchill Livingstone, New York, U.S.A. 1996, p. 263–98.

Harley, J. P., & Prescott, L. M., "Laboratory Exercises in Microbiology,"5th ed., WCB/McGraw-Hill, U.K. 2002.

Bed, M.K., and Naglot, A. Characterization of Rhizobium isolated from root nodules of Trifolium alexandrinum. J. Agri. Tech., 2011, 7(6): 1705–1723.

Ramaroson, M., Guillou, S., Rossero, A., Rezé, S., Anthoine, V., Moriceau, N., Zagorec, M. Selection procedure of bioprotective cultures for their combined use with high pressure processing to control spore-forming bacteria in cooked ham. Int. J. Food Microbiol. 2018; 276: 28–38.

Weinstein, M. P., Patel, J. B., Bobenchik, A., Campeau, S., Cullen, S. K., and Gallas, M. F. Clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing. 2019; 88–9.

Shankar, P.V., Shaikh, N.R., and Vishwas, P.S. Effect of Different Herbicides on the Nodulation Property of Rhizobial Isolates. Uni J. Environ Res. and Tech. 2012; 2:293-299.

Hewedy, O. A., Eissa, R. A., Elzanaty, A. M., Nagaty, H. H., and Abd Elbary, M. I. Phenotypic and genotypic diversity of Rhizobia nodulating Faba beans from various Egyptian locations. J. Bioprocess. Biotech. 2014; 4(5): 1.

Niste, M., Vidican, R., Puia, C., Rotar, I., and Pop, R. Isolation and biochemical characterization of Rhizobium leguminosarum bv. trifolii and Sinorhizobium meliloti using API 20 NE and API 20 E. Bull. USAMV Ser. Agric. 2015; 72:173.

Bhargava, Y., Murthy, J. S. R., Rajesh Kumar, T. V., and Narayana Rao, M. Phenotypic, stress tolerance, and plant growth-promoting characteristics of rhizobial isolates from selected wild legumes of the semiarid region of Tirupati, India. Adv. Microbiol. 2016; 6(1):1–12.

Mihaylova, S.; Genov, N. and Moore, E. Susceptibility of environmental strains of Rhizobium radiobacter to antimicrobial agents. World Appl. Sci. J., 2014; 31(5): 859-862.

Dhull, S.; Singh, K. and Gera, R. Intrinsic antibiotic resistance (IRA) of different rhizobial strains isolated from root nodules of Cyamopsis tetragonoloba L. Taub. Chem. Sci. Rev. Lett., 2018; 6(21): 88-93.

Khalid, R.; Zhang, X.X.; Hayat, R. and Ahmed, M. Molecular characteristics of rhizobia isolated from Arachis hypogaea grown under stress environ. Sustainability, 2020; 12(15): 6259-6267.

Abdell-Hakim, M.M.; Dakhly, O.F and Sameh, A.M. Characterization of some plant growth promoting rhizobacteria isolated from sugar beet rhizosphere. J. Mod. Res., 2022, 4: 6-13.

Naamala, J.; Jaiswal, S.K. and Dakora, F.D. Antibiotics resistance in Rhizobium: type, process, mechanism and benefit for agriculture. Curr. Microiol., 2016; 72(6): 804-816.

Prasad, C.K.; Vineetha, K.E.; Hassani, R. and Randhawa, G.S. Isolation and symbiotic characterization of aromatic amino acid auxotroph of Sinorhizobium meliloti. 2000. Indian J. Exp. Biol., 83: 1041-1049.

Macedo, G.; Olesen, A.K.; Maccario, L.; Leal L.H.; Maas, D.H.P.; Heederik, D. and Schmitt, H. Horizontal gene transfer of an IncP1 plasmid to soil bacterial community introduced by Escherichia coli through manure amendment in soil microcosms. Environ. Sci. Technol., 2022, 56(16): 11398-11408.

Sprout, S. L., Nelson, L., and Germida, J.J. Influence of metribuzin on the Rhizobium leguminosarum lentil (Lens culinaris) symbiosis. Can J. Microbiol., 1992; 38:343–349.