Main Article Content

Jihad Majeed Nori stcm22004@uokirkuk.edu.iq
Asim M. Murshid dr.asim.majeed@uokirkuk.edu.iq


Abstract

Each individual possesses a unique signature that is primarily employed to verify personal identity and authenticate legally binding documents or facilitate significant transactions, a method commonly utilized for verifying their identity. The utilization of this technology is restricted to the authentication of biometric recognition in a range of financial, legal, banking, insurance, and various other business documents. Techniques for recognizing signatures are employed to determine the specific user associated with a particular signature. In recent years, a significant number of researchers have focused on the implementation of novel approaches in this area, with a notable increase in the prevalence of deep learning techniques. To enhance the understanding of the evolution of offline handwritten signature recognition among researchers, this manuscript adopts a structured methodology to categorize this research, drawing primarily from studies found in set major databases. This study assesses methodologies for offline handwritten signature recognition by implementing predetermined inclusion and exclusion criteria. It explores various aspects, such as feature extraction and challenges in classification. In recent years, there have been noticeable advances and new developments. The paper accentuates the dominance of deep learning research directions in this specific domain. Differing from existing surveys, this paper does not confine itself to a particular research phase but meticulously outlines each stage, aspiring to guide future researchers in their investigations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nori, J. M., & Murshid , A. M. (2025). A Survey of Offline Handwriting Signature Verification. Al-Kitab Journal for Pure Sciences, 9(01), 117–128. https://doi.org/10.32441/kjps.09.01.p8
Section
Review Article

References

Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol. 2004;14(1):4–20.

Hameed MM, Ahmad R, Kiah MLM, Murtaza G. Machine learning-based offline signature verification systems: A systematic review. Signal Process Image Commun. 2021;93:1–34. doi:10.1016/j.image.2021.116139.

Taşkiran M, Çam ZG. Offline signature identification via HOG features and artificial neural networks. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE; 2017. p. 83–6.

Ghosh R. A Recurrent Neural Network based deep learning model for offline signature verification and recognition system. Expert Syst Appl. 2021;168:114249.

Wang Z, Muhammat M, Yadikar N, Aysa A, Ubul K. Advances in Offline Handwritten Signature Recognition Research: A Review. IEEE Access. 2023;11:120222–36. doi:10.1109/ACCESS.2023.3326471.

Jampour M, Abbaasi S, Javidi M. CapsNet regularization and its conjugation with ResNet for signature identification. Pattern Recognit. 2021;120:107851.

Ferrer MA, Diaz-Cabrera M, Morales A. Synthetic off-line signature image generation. In: 2013 International Conference on Biometrics (ICB). IEEE; 2013. p. 1–7.

Srinivasan H, Srihari SN, Beal MJ. Machine learning for signature verification. In: Computer Vision, Graphics and Image Processing: 5th Indian Conference, ICVGIP 2006, Madurai, India, December 13–16, 2006. Proceedings. Springer; 2006. p. 761–75.

Soleimani A, Fouladi K, Araabi BN. UTSig: A Persian offline signature dataset. IET Biometrics. 2017;6(1):1–8.

Pal S, Alaei A, Pal U, Blumenstein M. Performance of an off-line signature verification method based on texture features on a large indic-script signature dataset. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS). IEEE; 2016. p. 72–7.

Hashim Z, Mohsin H, Alkhayyat A. Signature verification based on proposed fast hyper deep neural network. IAES Int J Artif Intell. 2024;13(1):961–73. doi:10.11591/ijai.v13.i2.pp961-973.

Suteddy W, Agustini DAR, Atmanto DA. Offline Handwriting Writer Identification using Depth-wise Separable Convolution with Siamese Network. Int J Informatics Vis. 2024;8(1):535–41. doi:10.62527/joiv.8.1.2148.

Ibrahim RM, Nariman GS, Majeed HD. Offline Kurdish Character Handwritten Recognition (Okchr) Using Cnn With Various Preprocessing Techniques. J Eng Sci Technol. 2023;18(6):3113–27.

Mitchell A, Edbert E, Elwirehardja GN, Pardamean B. Offline Signature Verification Using Transfer Learning and Data Augmentation on Imbalanced Dataset. ICIC Express Lett. 2023;17(3):359–66. doi:10.24507/icicel.17.03.359.

Chang SJ, Wu TR. Development of a signature verification model based on a small number of samples. Signal Image Video Process. 2024;18(1):285–94. doi:10.1007/s11760-023-02714-9.

Musleh AMQ, Al-Azzani AMO. Developing a Model for Offline Signature Verification Using CNN Architectures and Genetic Algorithm. Sana'a University Journal of Science Applied and technology. 2023; 1(3):291–303. doi:10.59628/jast.v1i3.314.

Lopes JAP, Baptista B, Lavado N, Mendes M. Offline Handwritten Signature Verification Using Deep Neural Networks. Energies. 2022;15(20):1–15. doi:10.3390/en15207611.

Sharma N, et al. Offline signature verification using deep neural network with application to computer vision. J Electron Imaging. 2022;31(04):1–18. doi:10.1117/1.jei.31.4.041210.

Soelistio EA, Kusumo REH, Martan ZV, Irwansyah E. A review of signature recognition using machine learning. In: 2021 1st International Conference on Computer Science and Artificial Intelligence (ICCSAI). IEEE; 2021. p. 219–23.

Jose M, Kumar P. Offline Cursive Handwriting Recognition using Convolutional Neural Network. J Xidian Univ. 2021;15(August). doi:10.37896/jxu15.8/029.

Zhao B, Tao J, Yang M, Tian Z, Fan C, Bai Y. Deep imitator: Handwriting calligraphy imitation via deep attention networks. Pattern Recognit. 2020;104:107080.

Navid SMA, Priya SH, Khandakar NH, Ferdous Z, Haque AB. Signature verification using convolutional neural network. In: 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON). IEEE; 2019. p. 35–9.

Rexit A, Muhammat M, Xu X, Kang W, Aysa A, Ubul K. Multilingual handwritten signature recognition based on high-dimensional feature fusion. Information. 2022;13(10):496.

El Melhaoui O, Benchaou S. An efficient signature recognition system based on gradient features and neural network classifier. Procedia Comput Sci. 2022;198:385–90.

Aravinda CV, Meng L, Reddy KRUK, Prabhu A. Signature recognition and verification using multiple classifiers combination of Hu’s and HOG features. In: 2019 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE; 2019. p. 63–8.

Makdisi A, Boukaram W. Signature verification and forgery detection using deep learning techniques. In: 2020 16th International Conference on Computer Graphics, Imaging and Visualization (CGiV). IEEE; 2020. p. 94–9.

Shuaib M, Alam W, Hasan M. Offline handwritten signature recognition and verification using machine learning classifiers. Turk J Electr Eng Comput Sci. 2021;29(1):2925–41.

Gonzalez-Sosa EJ, Vargas-Soto H, Montes-Mata JA. Feature selection for signature verification using evolutionary computation techniques. In: 2021 International Conference on Electronics, Communications and Computers (CONIELECOMP). IEEE; 2021. p. 234–8.

Nguyen TM, Ha TV. A novel offline signature verification using Gabor filter and fuzzy inference system. J Comput Theor Nanosci. 2020;17(5):2252–60.

Hassanat AB, Awad S, Gharaibeh N. Combining local binary pattern with deep learning for offline signature verification. Neural Comput Appl. 2020;32(7):2345–57.

Raja H, Pothula S. Signature recognition and verification using deep learning architectures. J Comput Inf Sci Eng. 2019;19(2):45–53.

Morales A, Ferrer MA, Diaz M. Synthetic off-line signature image generation using Gaussian mixture models. Pattern Recognit Lett. 2015;65:191–7.

Alzu'bi MM, Fawwaz A, Muaidi H, Otoom AF. Feature extraction techniques for offline Arabic signature verification. Appl Comput Inf. 2023;19(1):55–64.

Dash PK, Patra G. Performance analysis of statistical and structural features for offline handwritten signature verification. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE; 2018. p. 862–7.

Zhu J, Xu Q, Zhang M. Cross-domain adaptation for signature verification using Siamese networks. Pattern Recognit. 2022;121:108245.

Fadlil A, Wiratno WA. Hybrid deep neural networks for handwritten signature recognition. In: 2021 11th International Conference on Information Communication Technology and System (ICTS). IEEE; 2021. p. 87–92.

Prathap S, Mathew G. Survey on offline handwritten signature verification using machine learning. Procedia Comput Sci. 2021;185:711–8.

Awad S, Jafar AM, Khalaf HS. Multimodal signature verification combining textural and shape features. Expert Syst Appl. 2021;179:115062.

Bensefia A, Nosary C, Paquet T. Writer-based offline signature verification using Hidden Markov Models. Int J Doc Anal Recognit (IJDAR). 2005;8(2–3):174–84.

Joshi R, Babu RV. Signature verification using kernelized feature extraction and classifier ensemble. In: 2018 International Conference on Advanced Computation and Telecommunication (ICACT). IEEE; 2018. p. 36–9.

Shah S, Bashir F, Ramachandran V. Offline signature verification and recognition using geometrical and texture features. Int J Comput Appl. 2017;165(9):23–9.

Karatzas D, et al. ICDAR 2015 competition on robust reading. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE; 2015. p. 1156–60.

Biggio B, Fumera G, Roli F. Pattern recognition systems under attack: Design issues and research challenges. Int J Comput Vis. 2015;113(3):411–25.

Shanker P, Rajasekar S. Offline signature verification using ANN. Pattern Recognit Lett. 2015;46:55–61.

Lee JH, Park DH. Effective features and neural network for offline signature verification. In: 2015 International Conference on Control, Automation and Systems (ICCAS). IEEE; 2015. p. 143–7.

Abdallah M, Zaidan A. Survey of forgery detection methods for handwritten signatures. Int J Comput Sci Eng. 2016;12(1):23–35.

Rivard J, Granger E, Sabourin R. Multi-feature selection and random subspace method for offline signature verification. Int J Doc Anal Recognit (IJDAR). 2014;17(3):213–34.

Su H, Guan D, Ghandilyan H. Offline signature verification using Graph Matching. Pattern Recognit. 2016;51:240–55.

Diaz M, Morales A, Ferrer MA. Synthetic signature verification: Feature fusion and advanced matching techniques. Expert Syst Appl. 2016;60:1–14.