POSTGRADUATE RESEARCH PROPOSAL

Ph D program

Authors

Keywords:

Ph D, Postgraduate study, Asthma, Atopy

Abstract

Asthma is a common worldwide disease with a prevalence of 5 to 10% [1].  A health condition that is characterized by chronic course of remission and exacerbation. Asthma is a heterogeneous respiratory inflammatory disease driven by immune responses and with different phenotypes and endotypes [2, 3]. Asthma is not a single entity and it is a heterogenic syndrome [4].Although, an extensive studies performed to illustrate the role of different cytokines and chemokines in induction of asthma pathogenesis; however, still there is uncovered sites in asthma pathogenesis. The outcomes of previous studies indicated that a large network of cytokines and chemokines are involved in inflammatory and immunologic responses [5, 6] in asthma with subsequent airway remodeling [7].

References

Mincheva RM, Ekerljung L, Bossios A, Lundback B, Lotvall J. High prevalence of severe asthma in a large random population study. J Allergy Clin Immunol 2018;141:2256-64.

Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approach. Nat Med. 2012;18(5):716–725.

Wu W, Bang S, Bleecker ER, Castro M, Denlinger L, Erzurm SC, et al. Multiview cluster analysis identifies variable corticosteroid response phenotypes in severe asthma. Am J Respir Crit Care Med 2019;139:1167-75.e2.

Kuruvilla ME, Lee FE, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019 Apr;56(2):219-233.

Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma . Immunity; 2019; 50:975-91.

Tiotiu A. Biomarkers in asthma: state of the art. Asthma Res Practice 2018;4:10.

Cianchetti S, Cardini C, Puxeddu I, Latorre M, Bartoli ML, Bracicich M, et al. Distinct profile of inflammatory and remodeling biomarkers in sputum of severe asthmatic patients with and without persistent airway obstruction. World Allergy Org J 2019;12:100078.

Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type-2 –driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009;180:388-95.

Kupczyk M, ten Brinke A, Sterk PJ, Bel EH, Papi A, Chanez P, et al. Frequent exacerbators –a distinct phenotype of severe asthma. Clin Exp Allergy 2014;44:212-21.

Yu S, Kim HY, Chang YJ, Dekruyff RH, Umetsu DT. Innate lymphoid cells and asthma. J Allergy Clin Immunol 2014;133(4):943-50.

Haspeslagh E, Debeuf N, Hammed H, Lambrecht BN, Murine model of allergic asthma. Methods Mol Biol 2017;1559:121-36.

Erle DJ, Sheppard D. The cell biology of asthma. J Cell Biol 2014;205(5):621-31.

Araujo PD, Souza AP, Bonorino CB. Th9 cells and interleukin-9 in the pathogenesis of asthmas. Braz J Develop, Curitiba 2020;6(4):19888-900.

Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C, et al. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Reports 2018;17:6935-41.

Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, et al. Epithelial cell dysfunction, a major driver of Aasthma development. Allergy 2020;75:1902-1917.

Agha EE, Seeger W, Bellusci S, Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Developmental Dynamics 2017;245:235-44.

Tan Y, Qiao Y, Chen Z, Liu J, Guo Y, Tran T, et al. FGF2, an immunomodulatory factor in asthma and chronic obstructive pulmonary disease (COPD). Front Cell Dev Biol 2020;8:223.

McBrien CN, Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne). 2017 Jun 30;4:93.

Adcock IM, Mumby S. Neutrophilic asthma. Arch Bronconeumol 2018;54(4):187-8.

Yang M, Kumar RK, Hansbro PM, Foster PS. Emerging roles of pulmonary macrophages in driving the development of severe asthma. J Leukocyte Biol 2012;91(4):557–569.

Kritas SK, Cerulli ASG, Speziali A, Antinolfi P, Pantalone A, Rosati M, et al. Asthma and mast cell biology. Eur J Inflamm 2014;12(2):261-265.

Miyake K, Karasuyama H. Emerging roles of basophils in allergic inflammation. Allergology International 2017;66:382-391.

Turner DL, Verter J, Turner R, Cao M. Tissue resident memory B cells established in lungs in allergic asthma. J Immunol 2017;198 (S1):71-3.

Roth M, Stolz D. Biomarkers and personalized medicine for asthma. Eur Respir J 2019;53:1802094.

Pavlidis S, Takahashi K, Ng Kee Kwong F, et al. T2-high in severe asthma related to blood eosinophil, exhaled nitric oxide and serum Periostin. Eur Respir J2019;53:1800938.

Fang F, Pan J, Li Y, et al. Identification of potential transcriptomic markers in developing asthma: An integrative analysis of gene expression profiles. Mol Immunol 2017;92:38-44.

Garcia-Marcos I, Edwards J, Kennington F, et al. Priorities for vfuture research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP). Clin Exp Allergy 2018;48:104-20.

Svenningsen S, Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Front Med (Lausanne) 2017;4:158.

Canonica GW, Ferrando M, Baiardini I, et al. Asthma personalized and precision medicine. Curr Opin Allergy Clin Immunol 2018;18:51-8.

Pelaia G, Vaterella A, Busceti MT, Gallelli L, Calabrese C, Terracciano R, et al. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediatotrs Inflamm 2015;2015:879783.

Metcalf DD, Pawankar R, Ackerman SJ, Akin C, Clayton F, Falcone FH, et al. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organization J 2016;9.

Kita H, Adolphoson CR, Glech GJ. Biology of eosinophils. In: Adkinson NF, Yunginger JW, Busse WW, Holgate ST, Simon FER, editors. Middleton’s Allergy, principles and practice, 6th ed. St Louis; Mosby, 2003.p.305-32.

Woschnagg C, Rubin J, Venge P, Eosinophil Cationic protein (ECP) is processed during secretion. J Immuneoal.2009;183(6):3949-54.

Koh GC,Shek LP, Goh DY, Van Bever H, Koh DS. Eosinophil cationic protein is it useful in asthma Asystematic review. Respir Med.2007;101(4):696-705.

Lowhagen O, Wever AM, Lsuardi M,Moscato G, De Bcker WA,Gandola L, et al. The inflammatory marker serum eosinophil cationic protein (ECP) compared with PEF as a tool to decide inhaled corticosteroid dose in asthmatic patients .Respir Med.2002;96(2):95-101

Bjok A, Venge P, Peterson CG.Measurement s of ECP in serum and the impact of plasma coagulation. Allergy. 2000;55(5):442-8.

Plotz SG, Simon HU, Darsow U, Simon D, VassinaE, Yousifi S, et al. Use of an anterleukin-5 antibody in hypersinophilic syndrome with eosinophilic dermatitis. N Eng J Med.2003; 349(24):2334-9.

Guo CL,Sun XM,Wang XW, Guo Q. Serum eosinophil cationic protein is a useful marker for assessing the efficacy of inhaled corticosteroid therapy in children with bronchial asthma. Tohoku J Exp Med 2017;242:263-71.

Shareef SH, Amin K. Effectiveness of biomarkers and serum parameters in determination allergic asthma and detection of its severity. Ann Trop Med Public Health 2020; 32(18):1-14.

Tecan,A, Guven, S, Kuscu, D, Yazar, A. & Palal, E (2014) o-1012 evaluation of asthma biomarkers and pulmonary function tests in children with asthma. Arch. Dis. Child;99, A581.

Alvarez Puebla MJ, Aroabarren Aleman E, Corcuera Garcia A, Ibañez Bereiz B, Iraola Iribar A, Olaguibel Rivera JM. Blood Eosinophils, Fraction of Exhaled Nitric Oxide, and Serum Eosinophil Cationic Protein as Surrogate Markers for Sputum Eosinophils in Asthma: Influence of Treatment With Inhaled Corticosteroids. J Investig Allergol Clin Immunol. 2018 Jun;28(3):210-212.

Kritas SK, Cerulli ASG, Speziali A, Antinolfi P, Pantalone A, Rosati M, et al. Asthma and mast cell biology. Eur J Inflamm 2014;12(2):261-265.

Weller CL, Collington SJ, Williams T, Lamb JR. Mast cells in health and disease. Clin Sci (Lond) 2011; 120(11):473-84.

Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher W, et al. IL-I induces vesicular secretion of IL-6 without degranulation from human mast eelIs. J Immunol 2003; 171(9):4830-6.

Conti P, Pang X, Boucher W, Letourneau R, Reale M, Barbacane RC, et al. Impact ofRantes and MCP-I chemokines on in vivo basophilic cell recruitment in rat skin injection model and their role in modifying the protein and mRNA levels for histidine decarboxylase. Blood 1997; 89(11):4120-7.

Irani AM, Schwartz LB. Human mast cell heterogeneity. Allergy Proc 1994; 15(6):303-8.

Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S73-80.

Pallaoro M, Fejzo MS, Shayesteh L, Blount JL, Caughey GH. Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem. 1999;274(6):3355–62.

Schwartz LB. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am. 2006;26(3):451–63.

Le QT, Gomez G, Zhao W, Hu J, Xia HZ, Fukuoka Y, et al. Processing of human protryptase in mast cells involves cathepsins L, B, and C. J Immunol. 2011;187(4):1912–8.

Le QT, Min HK, Xia HZ, Fukuoka Y, Katunuma N, Schwartz LB. Promiscuous processing of human alphabeta-protryptases by cathepsins L, B, and C. J Immunol. 2011;186(12):7136–43.

Sverrild A, van der Sluis S, Kyvik KO, Garvey LH, Porsbjerg C, Backer V, et al. Genetic factors account for most of the variation in serum tryptase--a twin study. Ann Allergy Asthma Immunol. 2013;111(4):286–9.

Zhang M-Q;H. Timmerman.Mast cell tryptase and asthma, Med of inflammation, 1997;6:311-317.

Brown JK, Tyler CL, Jones CA, Ruoss SJ, Hartmann T, Caughey GH. Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am J Respir Cell Mol Biol 1995; 13: 227 -236.

Ferguson AC, Whitelaw M, Brown H. Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma. J Allergy Clin Immuno l 1992; 90: 609 -613.

Gao S; Fan J; Wang Z. Diagnostic value of serum baseline tryptase levels in childhood asthma and its correlation with disease severity. Int Arch Allergy Immunol 2016; 171:194-202.

Yavuz ST, Sackesen C, Sahiner UM, Buyuktiryaki B, Arik Yilmaz E, Sekerel BE, Soyer OU, Tuncer A: Importance of serum basal tryptase levels in children with insect venom allergy. Allergy 2013;68:386-391.

Sahiner UM, Yavuz ST, Buyuktiryaki B, Cavkaytar O, Yilmaz EA, Tuncer A, Sackesen C: Serum basal tryptase may be a good marker for predicting the risk of anaphylaxis in children with food allergy. Allergy 2014;69:265-268.

Kucharewicz I, Bodzenta-Lukaszyk A, Szymanski W, Mroczko B, Szmitkowski M: Basal serum tryptase level correlates with severity of hymenoptera sting and age. J Investig Allergol Clin Immunol 2007;17:65-69.

Pattemore PK, Holgate ST: Bronchial hyperresponsiveness and its relationship to asthma in childhood. Clin Exp Allergy 1993;23:886-900.

Brannan JD: Bronchial hyperresponsiveness in the assessment of asthma control: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010;138:11S-17S.

Ediger D, Sin BA, Heper A, Anadolu Y, Misirligil Z: Airway inflammation in nasal polyposis: immunopathological aspects of relation to asthma. Clin Exp Allergy 2005;35:319-326.

Ferguson AC, Whitelaw M, Brown H: Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma. J Allergy Clin Immunol 1992;90:609-613.

Abdel Gawad TA;Terez B Kamel; Manal M Abd Al-Aziz; Abu-Sekin TA and Mourad Alfy Ramzy. Is serumTryptase a valuable marker for obesity-bronchial asthma interrelationship in children. ISSN: 2640-8082.

Anderew Abreo, MD; Jonathan Hemler, MD; Nashville,TN.Diagnostic Value of Serum Baseline Tryptase Levels in Childhood Asthma and Its Correlation with Disease Severity. URL: www.pediatrc.org/cgi/doi/10.1542/peds.2017-2475QQQ.

Etsuko Tagaya and Jun Tamaoki. Mechanisms of Airway Remodeling inAsthma: Allergy International. 2007; 65:331-340.

Fashy JV. Remodeling of the airway epithelium in asthma.Am. J. Respir. Crit. Care Med. 2001;164:S46-51.

Amishima M, Munakata M, Nasuhara Y et al. Expression of epidermal growth factor and epidermal growth factorreceptor immuno-reactivity in the asthmatic human airway. Am. J. Respir. Crit. Care Med. 1998;157:1907-1912.

Takeyama K, Fahy JV, Nadel JA. Relationship of epitdermal growth factors to goblet cell production in humanbronchi. Am. J. Respir. Crit. Care Med. 2001;163:511-516.

Laoukili J, Perret E, Willems T et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cell. J. Clin. Invest. 2001;108:1817-1824.

Shim JJ, Dabbag AK, Ueki IF et al. IL-13 induced mucin production by stimullationg epidermal growth factor receptors and by activationg neutrophils. Am. J. Physiol.Lung Mol. Physiol. 2001;280:L134-L140.

Sampath D, Castro M, Look DC, Holtzman MJ. Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) oathway in asthma. J. Clin. Invest. 1999;103:1353-1361.

Hashimoto M, Morita S, Iwashita H et al. Increased expression of the human Ca2+ activated Cl− channel I(CaCC 1) gene in the asthmatic airway. Am. J. Respir.Crit. Care Med. 2002;165:1132-1136.

Okumura S, Sagara H, Fukuda T et al. Fc epsilon R Imediated amphiregulin production by human mast cells increases mucin gene expression in epithelial cells. J. Allergy Clin. Immunol. 2005;115:272-279.

Jeffery PK. Remodelind in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 2001;164:S28-38.

Vignola AM, Mirabella F, Costanzo G et al. Airway remodeling in asthma. Chest 2003;123:S417-422.

Lazaar AL, Panettieri RA Jr. Is airway remodeling clinically relevant in asthma? Am. J. Med. 2003;115:642-659.

Kelly EA, Jarjour NN. Role of matrix metalloproteinasesin asthma. Curr. Opin. Pulm. Med. 2003;9:28-33.

Minshall EM, Leung DY, Martin RJ et al. Eosinophilassociated TGF-β1 mRNA expression and airways fibrosisin bronchial asthma. Am. J. Respir. Cell Mol. Biol. 1997; 17:326-333.

Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K. Transforming growth factor β1 (TGF β1) gene expression by eosinophils in asthmatic airway inflammation. Am. J. Respir. Cell Mol. Biol. 1996;15:404-409.

Lee CG, Homer RJ, Zhu Z et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activatingtransforming growth factor beta (1). J. Exp. Med. 2001;194:809-821.

Nakao A, Sagara H, Setoguchi Y et al. Expression of Smad7 in bronchial epithelial cells is inversely correlatedto basement membrane thickness and airway hyperresponsiveness in patients with asthma. J. Allergy Clin. Immunol. 2002;110:873-878.

Kuhn C, Mason R. Immunolocalization of SPARC, tenascin and thrombospondin in pulmonary fibrosis. Am. J.Physiol. 1998;274:L1049-1057.

Chakir J, Laviolette M, Boutet M, Laliberte R, Dube J, Boulet L. Lower airway remodeling in nonasthmatic subjects wuth allergic rhinitis. Lab. Invest. 1996;75:735-774.

Boulet LP, Turcotte H, Laviolette M et al. Airway hyperresponsiveness, inflammation, and subepithelial collagendeposition in recently diagnosed versus long-standingmild asthma. Influence of inhaled corticosteroids. Am. J.Respir. Cri. Care Med. 2000;162:1308-1313.

Chu H, Halliday J, Martin R, Leung D, Szefler S, Wenzel S. Collagen deposition in large airways may not differentiate severe asthma from milder forms of the disease. Am.J. Respir. Cri. Care Med. 1998;158:1936-1944.

Payne D, Rpgers A, Adelroth E et al. Reticular basement membrane thickness in children with difficult asthma.Am. J. Respir. Crit. Care Med. 2003;167:78-82.

Holgate S, Holloway J, Wilson S, Bucchieri F, Puddicoombe S, Davies D. Epithelial-mesenchymal communication in the pathogenesis of chronic asthma. Proc. Am.Thorac. Soc. 2004;1:93-98.

Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J. Immunol. 2003;171:380-389.

Batra V, Musani A, Hastie AT et al. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin(IL)-4 and IL-13 aftersegmental allergen challenge and their effects on alphasmooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin. Exp. Allergy 2004;34:437-444.

Ebina M, Takahashi T, Chiba T et al. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A-3-D morphometric study. Am Rev. Respir. Dis. 1993;148:720-726.

Hirst SJ, Martin JG, Bonacci JV et al. Proliferative aspects of airway smooth muscle. J. Allergy Clin. Immunol. 2004;114(Suppl):S2-17.

Black JL, Roth M, Lee J et al. Mechanisms of airway Remodeling. Am. J. Respir. Crit. Care Med. 2001;164:S63-S66.

Cantley lC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655-1657.

Krymskaya VP, Penn RB, Orsini MJ et al. Phosphatidylinositol 3-kinase mediates mitogen-induced human airwaysmooth muscle cell proliferation. Am. J. Physiol. LungCell. Mol. Physiol. 1999;277:l65-78.

Scott PH, Belham CM, Al-Hafidh J et al. A regulatory role for camp in phosphatidylinositol 3-kinasep70 ribosomalS6 kinase-mediated DNA synthesis in platelet-derivedgrowth-factor-stimulated bovine airway smooth-musclecells. Biochem. J. 1996;318:965-971.

Simon AR, Takahashi S, Severgnini M, Fanburg BL, Cochran BH. Role of the JAK-STAT pathway in PDGFstimulated proliferation of human airway smooth musclecells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002;282:L1296-1304.

Benayoun L, Druilhe A, Dombert MC, Aubier M, Pretolan M. Airway structural alterations selectivety associated with severe asthma. Am. J. Respir. Crit. Care Med. 2003;167:1360-1368.

Wruff PG, Dolganovood GM, Ferrando RE et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am. J. Respir. Crit. Care Med. 2004;169:1001-1006.

Mukhina S, Stepanova V, Traktouev D et al. The chemotactic action of urokinase on smooth muscle cells is dependent on its kringle domain. J. Biol. Chem. 2000;275:16450-16458.

Krymskkaya VP, Goncharov DA, Eszterhas A et al. Src isnecessary and sufficient for human airway smooth muscle cell proliferation and migration. FASEB J. 2005;19:428-430.

Saunders MA, Mitchell JA, Seldon PM et al. Release ofgranulocyte-macropharge colony stimulationg factor byhuman cultured airway smooth muscle cells: suppression by dexamethasone. Br. J. Pharmachol. 1997;120:545-546.

Hallsworth MP, Soh CPC, Twort CHC, Lee TH, Hirst SJ.Cultured human airway smooth muscle cells stimulated by interleukin 1β enhance eosinophil survival. Am. J.Respir. Cell Mol. Biol. 1998;19:910-919.

Akers IA, Parsons M, Hill MR et al. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am. J. Physiol. Cell Mol. Physiol.2000;278:L193-201.

Rennard SI, Basset G, Lecossier D et al. Estimation of the volume of epithelial lining fluid recovered by lavage using urea as a marker of dilution. J. Appl. Physiol. 1986;88:532-538.

Tam EK, Caughey GH. Degradation of airway neutropeptides by human lung tryptase. Am. J. Respir Cell Mol. Biol.1990;3:27-32.

Ammit AJ, Bekir SS, Johnson PRA et al. Mast cell numbers are increased in the smooth muscle of human sensitized isolated bronchi. Am. J. Respir. Crit. Care Med. 1997;155:1123-1129.

Brightling CE, Bradding P, Symon FA et al. Mast-cell infilatration of airway of airway smooth muscle in asthma.N. Engl. J. Med. 2002;346:1699-1705.

Gruber BL, Kew RP, Jelaska A et al. Human mast cells activate fibroblasts. J. Immunol. 1997;158:2310-2317.

Cairns JA, Walls AF. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-a expression. J. Immunol.1996;156:275-283.

Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 2002;346:1699-1705.

Berger P, Perng DW, Thabrew H et al. Tryptase and aginists of PAR-2-induce the proliferation of human airway smooth muscle cells. J. Appl. Physiol. 2001;91:1372-1379.

Rajah R, Nunn S, Herrick D, Grunstein MM, Cohen P. LTD 4 induces matrix metalloproteinase-1 which function as IGFBP protease in airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 1996;271:L1014-1022.

Foda HD, George S, Rollo E et al. Regulation of gelatinases in human airway smooth muscle cells: mechanism of progelatinase A activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 1999;277:L174-182.

Elshaw SR, Henderson N, Knox AJ, Watson SA, Buttle DJ, Johnson SR. Matrix metalloproteinase expression and activity in human airway smooth muscle cells. Br. J. Pharmacol. 2004;142:1318-1324.

Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163-176.

Van Eerdewegh P, Little RD, Dupuis J et al. Association of the ADA33 gene with asthma and bronchial hyperresponsiveness. Nature 2002;418:426-430.

Clauss M. Molecular biology of the VEGF and the VEGFreceptor family. Semin. Thromb. Hemost. 2000;26:561-569.

Hoshino M, Nakamura Y, Hamid QA. Gene expression ofvascular endothelial growth factor and receptors and angiogenesis in bronchial asthma. J. Allergy Clin. Immunol.2001;107:1034-1038.

Lee YC, Kwak Y-G, Song CH. Contribution of vascular endothelial growth factor hyperresponsivor to airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J. Immunol. 2002;186:3395-3600.

Einarsson O, Geba GP, Zhu Z, Landry M, Elias JA. Interleukin 11: stimulation invivo and in vitro by respiratory virusus and induction of airways hyperresponsiveness. J. Clin. Invest. 1996;97:915-924.

Schwarze J, Gelfand EW. Respiratory viral infection as promoters of allergic sensitization and asthma in animal models. Eur. Repir. J. 2002;19:341-349.

Wills-Krap M, Luyimbazi J, Xu X et al. Interleukin-13 central mediator of allergic asthma. Science 1998;282:2258-2260.

Zhu Z, Homer RJ, Wang Z et al. Pulmonary expression ofinterleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities and eotaxin production. J. Clin. Invest. 1999;103:779-788.

van der Toorn LM, Overbeek SE, de jongste JC et al. Airway inflammation is present during clinical remission of atopic asthma. Am. J. Respir. Crit. Care Med. 2001;164:2107-2113.

Ingram JL, Rice AB, Geisenhoffer K et al. IL-13 and IL-1 beta promote lung fibroblast growth through coordinated up-regulation of PDGF-AA and PDGF-Ralpha. FASEB J.2004;18:1132-1134.

Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne). 2020 May 21;7:191.

Boulet, Louis- Philippe. Airway remodeling in asthma 2018; 24; 56-62. Doi: 10.97/ MCP 0000000000000441.

Sheih-Lung Cheng. Immuology pathophysiology and airway remodeling mechanism in sever asthma; focused on Ige-mediated pathways.

I. Bara, A. Ozier, J-M. Tunon de Lara, R. Marthan, P. Berger. European Respiratory Journal 2010 36: 1174-1184; DOI: 10.1183/09031936.00019810.

Berger P, Girodet PO, Tunon De Lara JM. Mast cell myositis: a new feature of allergic asthma? Allergy 2005; 60: 1238–1240.

Berger P, Girodet PO, Begueret H, et al. Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis. FASEB J 2003; 17: 2139–2141.

Brightling CE, Ammit AJ, Kaur D, et al. The CXCL10/CXCR3 Axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am J Respir Crit Care Med 2005; 171: 1103–1108.

El-Shazly A, Berger P, Girodet PO, et al. Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J Immunol 2006; 176: 1860–1868.

Brightling CE, Bradding P, Symon FA, et al. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002; 346: 1699–1705.

Carroll NG, Mutavdzic S, James AL. Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur Respir J 2002; 19: 879–885.

137. Girodet PO, Ozier A, Trian T, et al. Mast cell adhesion to bronchial smooth muscle in asthma specifically depends on CD51 and CD44 variant 6. Allergy 2010; 65: 1004–1012.

Thangam EB, Venkatesha RT, Zaidi AK, et al. Airway smooth muscle cells enhance C3a-induced mast cell degranulation following cell–cell contact. FASEB J 2005; 19: 798–800.

Yang W, Kaur D, Okayama Y, et al. Human lung mast cells adhere to human airway smooth muscle, in part, via tumor suppressor in lung cancer-1. J Immunol 2006; 176: 1238–1243.

Hollins F, Kaur D, Yang W, et al. Human airway smooth muscle promotes human lung mast cell survival, proliferation, and constitutive activation: cooperative roles for CADM1, stem cell factor, and IL-6. J Immunol 2008; 181: 2772–2780.

Berger P, Walls AF, Marthan R, et al. Immunoglobulin E-induced passive sensitization of human airways: an immunohistochemical study. Am J Respir Crit Care Med 1998; 157: 610–616.

Berger P, N'Guyen C, Buckley M, et al. Passive sensitization of human airways induces mast cell degranulation and release of tryptase. Allergy 2002; 57: 592–599.

Berger P, Scotto-Gomez E, Molimard M, et al. Omalizumab decreases nonspecific airway hyperresponsiveness in vitro. Allergy 2007; 62: 154–161.

Berger P, Lavallee J, Rouiller R, et al. Assessment of bronchial inflammation using an automated cell recognition system based on colour analysis. Eur Respir J 1999; 14: 1394–1402.

Begueret H, Berger P, Vernejoux JM, et al. Inflammation of bronchial smooth muscle in allergic asthma. Thorax 2007; 62: 8–15.

Berger P, Compton SJ, Molimard M, et al. Mast cell tryptase as a mediator of hyperresponsiveness in human isolated bronchi. Clin Exp Allergy 1999; 29: 804–812.

Fixman ED, Stewart A, Martin JG. Basic mechanisms of development of airway structural changes in asthma. Eur Respir J 2007; 29: 379–389.

Laitinen LA, Laitinen A, Altraja A, et al. Bronchial biopsy findings in intermittent or “early” asthma. J Allergy Clin Immunol 1996; 98: 3–6.

Pohunek P, Warner JO, Turzikova J, et al. Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma. Pediatr Allergy Immunol 2005; 16: 43–51.

Cokugras H, Akcakaya N, Seckin, et al. Ultrastructural examination of bronchial biopsy specimens from children with moderate asthma. Thorax 2001; 56: 25–29.

Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci. 2018 Nov;75(21):3943-3961. doi: 10.1007/s00018-018-2899-4. Epub 2018 Aug 12. Erratum in: Cell Mol Life Sci. 2018 Aug 29;: PMID: 30101406; PMCID: PMC6182337.

Laronha H, Caldeira J. Structure and Function of Human Matrix Metalloproteinases. Cells. 2020 Apr 26;9(5):1076. doi: 10.3390/cells9051076. PMID: 32357580; PMCID: PMC7290392.

Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73.

Liu, J.; Khalil, R.A. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. Prog. Mol. Biol. Transl. Sci. 2017, 148, 355–420.

Fischer, T.; Senn, N.; Riedl, R. Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chemistry 2019, 25, 7960–7980.

Rangasamy, L.; Geronimo, B.D.; Ortín, I.; Coderch, C.; Zapico, J.M.; Ramos, A.; de Pascual-Teresa, B. Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules 2019, 24, E2982.

Tokuhara, C.K.; Santesso, M.R.; Oliveira, G.S.N.; Ventura, T.M.D.S.; Doyama, J.T.; Zambuzzi, W.F.; Oliveira, R.C. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J. Appl. Oral Sci. 2019, 27, e20180596.

Young, D.; Das, N.; Anowai, A.; Dufour, A. Matrix Metalloproteases as Influencers of the Cells’ Social Media. Int. J. Mol. Sci. 2019, 20, E3847.

Vandenbroucke, R.E.; Dejonckheer, E.; Libert, C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur. Respir. J. 2011, 38, 1200–1214.

Ko, F.W.; Diba, C.; Roth, M.; Patel, A.S.; Knolle, M.D.; Kobzik, L.; Owen, C.A. A comparison of airway and serum matrix metalloproteinase-9 activity among normal subjects, asthmatic patients, and patients with asthmatic mucus hypersecretion. Chest 2005, 127, 1919–1927.

Castano, R.; Miedinger, D.; Maghni, K.; Ghezzo, H.; Trudeau, C.; Castellanos, L.; Wattiez, M.; Vandenplas, O.; Malo, J.L. Matrix metalloproteinase-9 increases in the sputum from allergic occupational asthma patients after specific inhalation challenge. Int. Arch. Allergy Immunol. 2013, 160, 161–164.

Hong, Z.; Lin, Y.M.; Qin, X.; Peng, J.L. Serum MMP-9 is elevated in children with asthma. Mol. Med. Rep. 2012, 5, 462–464.

Bratcher, P.E.; Weathington, N.M.; Nick, H.J.; Jackson, P.L.; Snelgrove, R.J.; Gaggar, A. MMP-9 cleaves SP-D and abrogates its innate immune functions in vitro. PLoS ONE 2012, 7, e41881. [Google Scholar] [CrossRef] [PubMed]

Page, K.; Ledford, J.R.; Zhou, P.; Wills-Karp, M. A TLR2 agonist in German cockroach frass activates MMP-9 release and is protective against allergic inflammation in mice. J. Immunol. 2009, 183, 3400–3408.

Barbaro, M.P.; Spanevello, A.; Palladino, G.P.; Salerno, F.G.; Lacedonia, D.; Carpagnano, G.E. Exhaled matrix metalloproteinase-9 (MMP-9) in different biological phenotypes of asthma. Eur. J. Intern. Med. 2014, 25, 92–96.

Chung FT, Huang HY, Lo CY, Huang YC, Lin CW, He CC, He JR, Sheng TF, Wang CH. Increased Ratio of Matrix Metalloproteinase-9 (MMP-9)/Tissue Inhibitor Metalloproteinase-1 from Alveolar Macrophages in Chronic Asthma with a Fast Decline in FEV1 at 5-Year Follow-up. J Clin Med. 2019 Sep 12;8(9):1451.

Khokha, R.; Murthy, A.; Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol. 2013, 13, 649–665.

Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta. 2010, 1803, 3–19.

Roche, W.R.; Beasley, R.; Williams, J.H.; Holgate, S.T. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1989, 1, 520–524.

Lo, C.Y.; Huang, H.Y.; He, J.R.; Huang, T.T.; Heh, C.C.; Sheng, T.F.; Chung, K.F.; Kuo, H.P.; Wang, C.H. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1135–1144.

Vignola, A.M.; Riccobono, L.; Mirabella, A.; Profita, M.; Chanez, P.; Bellia, V.; Mautino, G.; D’accardi, P.; Bousquet, J.; Bonsignore, G. Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am. J. Respir. Crit. Care Med. 1998, 158, 1945–1950.

Tanaka, H.; Miyazaki, N.; Oashi, K.; Tanaka, S.; Ohmichi, M.; Abe, S. Sputum matrix metalloproteinase-9: Tissue inhibitor of metalloproteinase-1 ratio in acute asthma. J. Allergy Clin. Immunol. 2000, 105, 900–905.

Bai, T.R.; Cooper, J.; Koelmeyer, T.; Pare, P.D.; Weir, T.D. The effect of age and duration of disease on airway structure in fatal asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 663–669.

Bosse, M.; Chakir, J.; Rouabhia, M.; Boulet, L.P.; Audette, M.; Laviolette, M. Serum matrix metalloproteinase-9: Tissue inhibitor of metalloproteinase-1 ratio correlates with steroid responsiveness in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 1999, 159, 596–602.

Sagel, S.D.; Kapsner, R.K.; Osberg, I. Induced sputum matrix metalloproteinase-9 correlates with lung function and airway inflammation in children with cystic fibrosis. Pediatric Pulmonol. 2005, 39, 224–232.

Matsumoto, H.; Niimi, A.; Takemura, M.; Ueda, T.; Minakuchi, M.; Tabuena, R.; Chin, K.; Mio, T.; Ito, Y.; Muro, S.; et al. Relationship of airway wall thickening to an imbalance between matrix metalloproteinase-9 and its inhibitor in asthma. Thorax 2005, 60, 277–281.

Mercer, P.F.; Shute, J.K.; Bhowmik, A.; Donaldson, G.C.; Wedzicha, J.A.; Warner, J.A. MMP-9, TIMP-1 and inflammatory cells in sputum from COPD patients during exacerbation. Respir. Res. 2005, 6, 151.

Ohno I, Ohtani H, Nitta Y, et al. Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol 1997; 16: 212–219.

Lee CG, Homer RJ, Zhu Z, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J Exp Med 2001; 194: 809–821.

Johnson PR, Burgess JK, Ge Q, et al. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. Am J Respir Crit Care Med 2006; 173: 32–41.

Malavia NK, Raub CB, Mahon SB, et al. Airway epithelium stimulates smooth muscle proliferation. Am J Respir Cell Mol Biol 2009; 41: 297–304.

Mautino, G.; Oliver, N.; Chanez, P.; Bousquet, J.; Capony, F. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am. J. Respir. Cell Mol. Biol. 1997, 17, 583–591.

Han, Z.; Zhong, N. Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respir. Med. 2003, 97, 563–567.

Wenzel, S.E.; Balzar, S.; Cundall, M.; Chu, H.W. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: Association with asthma severity, neutrophilic inflammation, and wound repair. J. Allergy Clin. Immunol. 2003, 111, 1345–1352.

Ventura, I.; Vega, A.; Chacón, P.; Chamorro, C.; Aroca, R.; Gómez, E.; Bellido, V.; Puente, Y.; Blanca, M.; Monteseirín, J. Neutrophils from allergic asthmatic patients produce and release metalloproteinase-9 upon direct exposure to allergens. Allergy 2014, 69, 898–905.

Kostamo, K.; Tervahartiala, T.; Sorsa, T.; Richardson, M.; Toskala, E. Metalloproteinase function in chronic rhinosinusitis with nasal polyposis. Laryngoscope 2007, 117, 638–643.

Vignola, A.M.; Kips, J.; Bousquet, J. Tissue remodeling as a feature of persistent asthma. J. Allergy Clin. Immunol. 2000, 105, 1041–1053.

Bergeron C., Tulic M.K., Hamid Q. Airway remodelling in asthma: From bench side to clinical practice. Can. Respir. J. 2010;17:e85–e93.

Ward, C.; Pais, M.; Bish, R.; Reid, D.; Feltis, B.; Johns, D.; Walters, E.H. Airway inflammation, basement membrane thickening and bronchial hyperresponsiveness in asthma. Thorax 2002, 57, 309–316.

Barnes, P.J. Corticosteroid resistance in airway disease. Proc. Am. Thorac. Soc. 2004, 1, 264–268.

American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, November 1986. Am. Rev. Respir. Dis. 1987, 136, 225–244.

Cataldo, D.D.; Gueders, M.; Munaut, C.; Rocks, N.; Bartsch, P.; Foidart, J.M.; Noël, A.; Louis, R. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases mRNA transcripts in the bronchial secretions of asthmatics. Lab. Investig. 2004, 84, 418–424.

The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. European Network for Understanding Mechanisms of Severe Asthma. Eur. Respir. J. 2003, 22, 470–477.

Bergeron, C.; Tulic, M.K.; Hamid, Q. Airway remodelling in asthma: From bench side to clinical practice. Can. Respir. J. 2010, 17, e85–e93.

Corry, D.B.; Kiss, A.; Song, L.Z.; Song, L.; Xu, J.; Lee, S.H.; Werb, Z.; Kheradmand, F. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J. 2004, 18, 995–997.

https://www.sinobiological.com/resource/mmp-16/proteins]

Amar A, Smith L, Fields G. Matrix metalloproteinase collagenolysis in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2017;1864(11):1940-51.].

Zhao H, Bernardo MM, Osenkowski P, Sohail A, Pei D, Nagase H, et al . Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 rgulates pro-MMP-2 activation. R. J. Biol. Chem. 2004;279, 8592-601.

Walsh LA, Cooper CA, Damjanovski S. Soluble membrane-type 3 matrix metalloprioteinase causes changes in gene expression and increased gelatinase activity during Xenopus laevis development. S.Int. J. Dev. Biol. 2007;51:389-95.

Somerville RP, Oblander SA, Apte SS. Matrix metalloproteinases: old dogs with new tricks. Genome Biol. 2003;4:216.

Shi J, Son MY, Yamada S, Szabova L, Kahan S, Chrysovergis K, et al. Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev Biol. 2008 Jan 1;313(1):196-209].

Yao Y, Shen H, Zhou Y, Yang Z, Hu T. MicroRNA-215 suppresses the proliferation, migration and invasion of non- small cell lung carcinoma cells through the downregulation of matrix metalloproteinase-16 expression, Exp Ther Med 2018;15(4):3239–3246.

Wang H, Li XT, Wu C, Wu ZW, Li YY, Yang TQ, et al. miR-132 can inhibit glioma cells invasion and migration by target MMP 16 invitro, Onco Ther 2015; 8:3211–3218.

Zhang WL, Chen YF, Meng HZ, Du JJ, Luan GN, Wang HQ, et al. Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration, J Orthop Res 2017;35(6):1323–1334.

Nakada M, Nakamura H, Ikeda E, Fujimoto N, Yamashita J, Sato H, et al. Expression and tissue localization of membrane-type1, 2, and 3 matrix metalloproteinases in human as trocytic tumors, Am J Pathol. 1999;4(2): 417–428.

Kuwabara Y, Kobayashi T, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Nishihama K, et al. Role of matrix Metalloproteinase-2 in eosinophil-mediated airway remodeling, Front nImmunol 2018; 9:2163.

Yin H, S. Zhang, Y. Sun, S. Li, Y. Ning, Y. Dong, Y. Shang, C. BaiMicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy Cell Death Dis., 8 (8) (2017), p. e2998

Liu JN, D.H. Suh, H.K. Trinh, Y.J. Chwae, H.S. Park, Y.S. ShinThe role of autophagy in allergic inflammation: a new target for severe asthma Exp. Mol. Med., 48 (7) (2016), p. e243.

Lou L, Tian M, Chang J, Li F, Zhang G. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7. Biomed Pharmacother. 2020 Feb;122:109692.

McAlinden KD, Deshpande DA, Ghavami S, Xenaki D, Sohal SS, Oliver BG, et al. Autophagy activation in asthma airways remodeling, Am J Respir Cell Mol Biol 2019; 60(5):541–553.

Yamaguchi M, Niimi A, Matsumoto H, et al. Sputum levels of transforming growth factor-beta 1 in asthma: relation to clinical and computed tomography findings. J Investig Allergol Clin Immunol 2008;18:202-6.

Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor β and severe asthma: a perfect storm. Respir Med 2014;108:1409-23.

Ferreira DS, Carvalho –Pinto RM, Gregorio MG, et al. Airway pathology in severe asthma is related to airflow obstruction but not symptom control. Allergy 2018;73:635-43.

Jia G, Erickson RW, Choy DF, et al. Bronchoscopic exploratory research study of biomarkers in corticosteroid-refractory asthma (BOBCAT) study group. Periostin is a systemic biomarkers of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol 2012;130:647-54.

Bobolea I, Barranco P, Del Pozo V, et al. Sputum periostinin patients with different severe asthma phenotypes. Allergy 2015;70:540-6.

Fingleton J, Braithwaite I, Travers J, et al. NZRHS Study Group. Serum Periostin inobstructive airway disease. Eur Respir J 2016;47:1383-91.

Kanemitsu Y, Matsumoto H, Izuhara K, et al. Increased Periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J Allergy Clin Immunol2013;132:305-12.

EY Bissonnette, Madore AM, Chakir J, et al. Fibroblast growth factor-2 is a sputum remodeling biomarker of severe asthma. J Asthma 2014;51:119-26.

Guzy RD, Stoilov I, Slton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in reponse to bleomycin. Am J Respir Cell Mol Biol 2015;52:116-28.

Lee BJ, Moon HG, Shin TS, et al. Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon –ϒ. Exp Mol Med. 2011;43:169-78.

Schuliga M, Javeed A, Harris T, et al. Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Am J Respir cell Mol Biol 2013;48:346-53.

Refaat MM, Ahmed EE, Elsayed HM, El-banna AH. Sputum Periostin in patients with different asthma phenotypes. QIM 2020;113(S1).

Kim YK, Kang H, Kim BM, Son M. Agent comprising FGF2 as an effective ingredient for treatment or prevention of asthma and chronic obstructive pulmonary disease. United States. Patent publication. Pub. No.: US 2008/0172751 A1 Pub. Date: Jul. 17, 2008.

Yum HY, Cho JY, Miller M, Broide DH. Allergen-induced coexpression of bFGF and TGF-β1 by macrophages in a mouse model of airway remodeling: bFGF induces macrophage TGF-β1 expression in vitro. Int Arch Allergy Immunol. 2011;155(1):12-22.

Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009 Mar;8(3):235-53.

Colvin JS,White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in FGF9-nill mice identify this gene as an essential regulator of lung mesenchyme. Development 2001; 128, 2095-2016 (2001).

Loffredo LF, Abdala-Valencia H, Anekalla KR, Cuervo-Pardo L, Gottardi CJ, Berdnikovs S. Beyond epithelial-to-mesenchymal transition: Common suppression of differentiation programs underlies epithelial barrier dysfunction in mild, moderate, and severe asthma. Allergy. 2017 Dec;72(12):1988-2004.

Mulder DJ, Pacheco I, Hurlbut DJ, Mak N, Furuta GT, MacLeod RJ, Justinich CJ. FGF9-induced proliferative response to eosinophilic inflammation in oesophagitis. Gut. 2009 Feb;58(2):166-73.

Webb, R.C. 2003. Smooth muscle contraction and relaxation. In Advances in Physiology Education. Vol. 27. pp. 201. White, M.V. 1990. The role of histamine in allergic diseases. J. Allergy Clin. Immunol. 86(4): 599–605.

Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G. 1986. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103(6): 2787–2796.

Hinz, B., Celetta, G., Tomasek, J.J., Gabbiani, G., and Chaponnier, C. 2001. Alphasmooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell, 12(9): 2730–2741.

Scichilone, N., Kapsali, T., Permutt, S., and Togias, A. 2000. Deep inspirationinduced bronchoprotection is stronger than bronchodilation. Am. J. Respir. Crit. Care Med. 162: 910–916.

Wang, L., Paré, P.D., and Seow, C.Y. 2000. Effects of length oscillation on the subsequent force development in swine tracheal smooth muscle. J. Appl. Physiol. (1985), 88(6): 2246–2250.

Chin, L.Y., Bosse, Y., Pascoe, C.D., Hackett, T.L., Seow, C.Y., and Pare, P.D. 2012. Mechanical properties of asthmatic airway smooth muscle. Eur. Respir. J. 40(1): 45–54.

Woodruff, P.G., Dolganov, G.M., Ferrando, R.E., Donnelly, S., Hays, S.R., Solberg, O.D., et al. 2004. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am. J. Respir. Crit. Care Med. 169: 1001–1006.

Léguillette, R., Laviolette, M., Bergeron, C., Zitouni, N., Kogut, P., Solway, J., et al. 2009. Myosin, transgelin, and myosin light chain kinase. Am. J. Respir. Crit. Care Med. 179(3): 194–204.

Woodman, L., Siddiqui, S., Cruse, G., Sutcliffe, A., Saunders, R., Kaur, D., et al. 2008. Mast cells promote airway smooth muscle cell differentiation via autocrine up-regulation of TGF-beta 1. J. Immunol. 181(7): 5001–5007.

Rosner SR, Pascoe CD, Blankman E, Jensen CC, Krishnan R, James AL, et al. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics. PLoS One. 2017;12(3):e0171728.

Salter HH. On asthma: its pathology and treatment. Second ed. New York: William Wood and Company; Google ebooks; 1868 1868. 284 p.

Lim TK, Pride NB, Ingram RH, Jr. Effects of volume history during spontaneous and acutely induced airflow obstruction in asthma. Am Rev Respir Dis. 1987; 135(3):591–6.

Skloot G, Permutt S, Togias A. Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration. J Clin Invest. 1995; 96(5):2393–403.

Nadel JA, Tierney DF. Effect of a previous deep inspiration on airway resistance in man. J Appl Physiol. 1961; 16:717–9.

Bendixen HH, Smith GM, Mead J. Pattern of Ventilation in Young Adults. J Appl Physiol. 1964; 19:195– 8.

Gump A, Haughney L, Fredberg J. Relaxation of activated airway smooth muscle: relative potency of isoproterenol vs. tidal stretch. J Appl Physiol (1985). 2001; 90(6):2306–10.

Jensen A, Atileh H, Suki B, Ingenito EP, Lutchen KR. Airway caliber in healthy and asthmatic subjects: effects of bronchial challenge and deep inspirations. J Appl Physiol. 2001; 91(1):506–15.

Wheatley JR, Pare PD, Engel LA. Reversibility of induced bronchoconstriction by deep inspiration in asthmatic and normal subjects. Eur Respir J. 1989; 2(4):331–9.

Stirling DR, Cotton DJ, Graham BL, Hodgson WC, Cockcroft DW, Dosman JA. Characteristics of airway tone during exercise in patients with asthma. J Appl Physiol. 1983; 54(4):934–42.

King GG, Moore BJ, Seow CY, Pare PD. Time course of increased airway narrowing caused by inhibition of deep inspiration during methacholine challenge. Am J Respir Crit Care Med. 1999; 160(2):454– 7.

King GG, Moore BJ, Seow CY, Pare PD. Airway narrowing associated with inhibition of deep inspiration during methacholine inhalation in asthmatics. Am J Respir Crit Care Med. 2001; 164(2):216–8.

Ray DW, Hernandez C, Munoz N, Leff AR, Solway J. Bronchoconstriction elicited by isocapnic hyperpnea in guinea pigs. J Appl Physiol. 1988; 65(2):934–9.

Scichilone N, Kapsali T, Permutt S, Togias A. Deep inspiration-induced bronchoprotection is stronger than bronchodilation. Am J Respir Crit Care Med. 2000; 162(3 Pt 1):910–6.

Fredberg JJ. Frozen objects: small airways, big breaths, and asthma. J Allergy Clin Immunol. 2000; 106 (4):615–24.

Lavoie TL, Krishnan R, Siegel HR, Maston ED, Fredberg JJ, Solway J, et al. Dilatation of the constricted human airway by tidal expansion of lung parenchyma. Am J Respir Crit Care Med. 2012; 186(3):225– 32.

Fredberg JJ, Inouye D, Miller B, Nathan M, Jafari S, Raboudi SH, et al. Airway smooth muscle, tidal stretches, and dynamically determined contractile states. Am J Respir Crit Care Med. 1997; 156 (6):1752–9.

Fredberg JJ, Inouye DS, Mijailovich SM, Butler JP. Perturbed equilibrium of myosin binding in airway smooth muscle and its implications in bronchospasm. Am J Respir Crit Care Med. 1999; 159(3):959– 67.

Fredberg JJ, Jones KA, Nathan M, Raboudi S, Prakash YS, Shore SA, et al. Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J Appl Physiol (1985). 1996; 81(6):2703–12.

Mijailovich SM, Butler JP, Fredberg JJ. Perturbed equilibria of myosin binding in airway smooth muscle: bond-length distributions, mechanics, and ATP metabolism. Biophys J. 2000; 79(5):2667–81.

Mijailovich SM, Fredberg JJ, Butler JP. On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophys J. 1996; 71(3):1475–84.

Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, et al. Universal physical responses to stretch in the living cell. Nature. 2007; 447(7144):592–5.

Krishnan R, Park CY, Lin YC, Mead J, Jaspers RT, Trepat X, et al. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE. 2009; 4(5):e5486.

Oliver MN, Fabry B, Marinkovic A, Mijailovich SM, Butler JP, Fredberg JJ. Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason? Am J Respir Cell Mol Biol. 2007; 37(3):264–72.

Wang L, Pare PD, Seow CY. Effects of length oscillation on the subsequent force development in swine tracheal smooth muscle. J Appl Physiol. 2000; 88(6):2246–50.

Hiorns JE, Bidan CM, Jensen OE, Gosens R, Kistemaker LE, Fredberg JJ, et al. Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice. Front Physiol. 2016; 7:309.

Lauzon A, Bates J, Donovan G, Tawhai M, Sneyd J, Sanderson M. A multi-scale approach to airway hyperresponsiveness: from molecule to organ. Frontiers in Physiology: ComputationalPhysiologyandMedicine. 2012; 3 Article 191.

Donovan GM. Multiscale mathematical models of airway constriction and disease. Pulm Pharmacol Ther. 2011; 24(5):533–9.

Donovan GM. Systems-level airway models of bronchoconstriction. Wiley Interdiscip Rev Syst Biol Med. 2016; 8(5):459–67.

Dowie J, Ansell TK, Noble PB, Donovan GM. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips. Respir Physiol Neurobiol. 2016; 220:25–32.

Pascoe CD, Donovan GM, Bosse Y, Seow CY, Pare PD. Bronchoprotective effect of simulated deep inspirations in tracheal smooth muscle. J Appl Physiol (1985). 2014; 117(12):1502–13.

LaPrad AS, Szabo TL, Suki B, Lutchen KR. Tidal stretches do not modulate responsiveness of intact airways in vitro. J Appl Physiol. 2010; 109(2):295–304.

Laprad AS, Lutchen KR. The Dissolution of Intact Airway Responsiveness from Breathing Fluctuations —What Went Wrong? J Appl Physiol. 2011.

Noble PB, Jones RL, Cairncross A, Elliot JG, Mitchell HW, James AL, et al. Airway narrowing and bronchodilation to deep inspiration in bronchial segments from subjects with and without reported asthma. J Appl Physiol (1985). 2013; 114(10):1460–71.

Lambert RK, Pare PD. Lung parenchymal shear modulus, airway wall remodeling, and bronchial hyperresponsiveness. J Appl Physiol. 1997; 83(1):140–7.

Macklem PT. A theoretical analysis of the effect of airway smooth muscle load on airway narrowing. Am J Respir Crit Care Med. 1996; 153(1):83–9.

Pratusevich VR, Seow CY, Ford LE. Plasticity in canine airway smooth muscle. J Gen Physiol. 1995; 105(1):73–94.

Seow CY, Pratusevich VR, Ford LE. Series-to-parallel transition in the filament lattice of airway smooth muscle. J Appl Physiol. 2000; 89(3):869–76.

Ma X, Cheng Z, Kong H, Wang Y, Unruh H, Stephens NL, et al. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol. 2002; 283(6):L1181–9.

Lauzon AM, Martin JG. Airway hyperresponsiveness; smooth muscle as the principal actor. F1000Res. 2016; 5.

Chin LY, Bosse´ Y, Pascoe C, T.L. H, Seow CY, Pare´ PD. Mechanical properties of asthmatic airway smooth muscle. Eur Respir J. 2012; 40(1):45–54.

Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol. 2005; 171 (2):209–15.

Lele TP, Pendse J, Kumar S, Salanga M, Karavitis J, Ingber DE. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J Cell Physiol. 2006; 207(1):187–94.

Smith M, Blankman E, Gardel M, Luettjohann L, Waterman C, Beckerle M. A Zyxin-Mediated Mechanism for Actin Stress Fiber Homeostasis. Development Cell. 2010; 19:365–76.

Ijpma G, Kachmar L, Matusovsky OS, Bates JH, Benedetti A, Martin JG, Lauzon AM. Human trachealis and main bronchi smooth muscle are normoresponsive in asthma. Am J Respir Crit Care Med. 2015 Apr 15;191(8):884-93.

Koopman T, KumawatK, Halayko A, Gosens R. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Scientific Report 2016;6:30676:1-10.

Dong L, Wang Y, Zheng T, Pu Y, Ma Y, Qi X, Zhang W, Xue F, Shan Z, Liu J, Wang X, Mao C. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res Ther. 2021 Jan 6;12(1):4.

Gu W, Lei J, Xie J, Xiao Y, Zhang Z, Zhao L. Effect of the BMPR-II-SMAD3/MRTF complex on proliferation and migration of ASMCs and the mechanism in asthma. bioRxiv 2020;11.19.389585.

Wang L, Feng X, Hu B, Xia Q, Ni X, Song Y. P2X4R promotes airway remodeling by acting on the phenotype switching of bronchial smooth muscle cells in rats. Purinergic Signalling 14, 433–442 (2018).

Cheng Z., Wang X., Dai L., Jia L., Jing X., Liu Y., Wang H., Li P., An L., Liu M. Suppression of microRNA-384 enhances autophagy of airway smooth muscle cells in asthmatic mouse. Oncotarget. 2017; 8: 67933-67941.

Boser SR, Mauad T, Araujo-Paulino BB, Mitchell I, Shrestha G, Chiu A, et al. Myofibroblasts are increased in the lung parenchyma in asthma. PLOS ONE 2N01V7;12(8):E0182378.

Bara I, Ozier A, Tunon de Lara JM, Marthan R, Berger P. Pathophysiology of bronchial smooth muscle remodelling in asthma. European Respiratory Journal 2010;36(5):1174-1184; DOI: https://doi.org/10.1183/09031936.00019810

Downloads

Published

2025-08-01

How to Cite

Alsamarai, A. (2025). POSTGRADUATE RESEARCH PROPOSAL: Ph D program. INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 8(3), 62–93. Retrieved from https://isnra.net/ojs/index.php/ijms/article/view/1347