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Abstract: 

The current research tackles the performance of Spatiotemporal Interpolation Techniques 

using the Kriging Technique after relating it to time, which is introduced to the Prediction 

Process as the reliable mathematical formula to obtain the best performance of a proposed 

mathematical model. This study's main objective is to evaluate the best Unbiased Linear 

Prediction Technique with the slightest variance of error through mathematical equations that 

are derived and related to time. 

In this study, the researcher used Spatiotemporal Data of Soil Pollution with minerals in the 

industrial zone in Mosul city with the actual locations. The data consists of (192) real 

observations of Arsenic (As) and Chrome (Cr) in the AL Karama Industrial Zone, and this data 

represents the depth with the actual locations. The Kriging Technique and Kriging Covariance 

through the mathematical formula are related to time in this research. A function for the place 

was applied, namely, the variogram function that represents the difference between the 

observations, as this function was determined for all the directions of the compass, and its 

parameters were estimated. Through the covariance and the standards of error, it was concluded 

that the ideas of the Mathematical Spatiotemporal model express the positivity of the proposed 

model amongst the models of the Covariance functions, such as the Spherical model and the 
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Exponential model, which are approximate models from the principal point of view to the 

characteristics of the Kriging mode. We also recommend entering three-dimensional data to 

obtain a proposed mathematical model or data for infectious diseases and atmospheric gas 

Pollution, using other Spatiotemporal Prediction methods and linking them with artificial 

intelligence and Fuzzy methods. All the calculations were conducted using the MATLAB 

Language. 

Keywords: The Universal Kriging, the Covariance models, Spatiotemporal data, standards 

of error. 

 

التربة بالمعادن في منطقة  استخدام الكريكنك الشامل للبيانات الزمانية المكانية لتلوث 

 الكرامة الصناعية في مدينة الموصل 

 
 مي حسين علي *، غانم محمود ظاهر 

mustafamohamed40020@gmail.com    ،hassod@uomosul.edu.iq-ghanim   

  

 ، العراق.كلية التربية للعلوم الصرفة، جامعة الموصل ، قسم الرياضيات 

 :الخلاصة

يتناول هذا البحث أداء تقنيات الاستكمال الزماني المكاني باستخدام تقنية كريكنك بعد ربطها بالزمن والتي تدخل في عملية  

التنبؤ على شكل صيغ رياضية معتمدة من أجل الحصول على أفضل أداء لنموذج رياضي مقترح. إن الهدف الرئيسي من هذه 

م التنبؤ  لتقنية  للخطأ من خلال  الدراسة هو تقييم أفضل  أقل تباين  ن أجل الحصول على أفضل تنبؤ خطي غير متحيز مع 

 معادلات رياضية مشتقة ومرتبطة بالزمن.  

لقد تم الاعتماد في هذا البحث على بيانات زمانية ومكانية لتلوث التربة بالمعادن في منطقة صناعية في مدينة الموصل  

( في صناعة  Cr( والكروم )As( مشاهدة حقيقية لكل من معدني الزرنيخ )192مع مواقعها الحقيقية حيث تتكون البيانات من )

الكرامة وهذه البيانات تمثل العمق مع مواقعها الحقيقية. من خلال هذا البحث تم تطبيق تقنية كريكنك وتباين كريكنك من خلال  

بين  الفرق  تمثل  والتي  الفاريوكرام  دالة  هي  للزمن  ودالة  للموقع  دالة  تطبيق  تم  وقد  بالزمن.  المرتبطة  الرياضية  الصيغ 

مات الدالة. وتم من خلال النتائج التوصل إلى أن  تساب هذه الدالة لجميع اتجاهات البوصلة وتقدير معلالمشاهدات حيث تم اح

تقنية كريكنك تظهر أداءً وتقديراً مميزاً وواقعياً وذلك من خلال صيغ التباين ومعايير صحة الخطأ. إن أفكار النموذج الرياضي 

النموذ التغاير مثل  نماذج دوال  المقترح من بين  النموذج  إيجابية  المشترك يعبر عن  المكاني  الكروي والنموذج  الزماني  ج 

للحصول    الأبعادبيانات ثلاثية    بإدخالالأسُي وهما نموذجان متقاربان من حيث المبدأ لخصائص تقنية كريكنك. كما نوصي  

الجوية، واستخدام طرق تنبؤ زمكانية    لأمراضبيانات    أو على نموذج رياضي مقترح،   بالغازات   أخرىالعدوى والتلوث 

مع   الا  أساليبوربطها  تم    الأسلوب  أوصطناعي  الذكاء  )  إجراءالمضبب.   ماتلاب  لغة  باستخدام   Matlabالحسابات 

Language  .) 

 . زمانية مكانية، معايير الخطأالكريكنك الشامل، نماذج التغاير، بيانات  :المفتاحيةالكلمات 
 

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq
mailto:mustafamohamed40020@gmail.com
mailto:ghanim-hassod@uomosul.edu.iq


Ali MH, Dhahir GM. / Al-Kitab Journal for Pure Sciences (2023); 7(2):99-114.

 

 
Web Site: https://isnra.net/index.php/kjps   E. mail: kjps@uoalkitab.edu.iq

 
101 

 

1. Introduction : 

Kriging Technique gained this name after the name of the South African mining engineer D. 

G. Krige, who submitted specific ideas in his master's thesis in (1951), and these ideas were 

adopted by the famous French mathematician George Matheran and called the Kriging 

Technique for spatial prediction. Spatial prediction received significant attention in statistics as 

the forecast can potentially affect the values in unknown locations. Despite the long history of 

this subject, the uncertainty feature is related to the type of the most convenient prediction 

method. Sometimes, many researchers rely on the nature of the data (samples) and the decisions 

made when identifying the prediction criteria. When any vector is specified, a particular 

indicator can be measured by increasing the number of Kriging applications, and it is the Best 

Linear Unbiased Prediction (BLUP)m where the statistical characteristic is preferred repeatedly 

so that the chance is available to determine the mean as a model in Kriging Technique. Usually, 

the spatial technique is evaluated into two values: mean and residual. Here, the random data is 

related to the residual, and the Universal kriging (UK) becomes related to the mean. Several 

studies suggest a model estimate the level of air pollution explicitly by merging both the 

temporal and spatial dependent variables; spatial interpolation methods and their applications 

have been developed in various disciplines, such as mining engineering [11] and environmental 

sciences [6], [1], many studies have dealt with spatial prediction [5], [15], in health, pollution 

and precipitation [16], in the field of soil data, its properties and groundwater [3], [2]. 

2. Method 

2.1 Regionalized Random Variables: 

If the random variable Z(s) is a spatial variable in the location s, and if 𝑠 = 𝑠𝑜 , then Z*(so) 

is the variable to be predicted in the location 𝑠𝑜. The random spatial variable (regional) is 

defined as a numerical function with a spatial distribution that is different from one location to 

another with the continuity of the phenomenon, but the spatial (regional) data is the information 

that describes objects and events in a location of the earth surface or near it or inside the earth 

or close to it. Usually, the spatial geographical data involves the information of the location (it 

includes coordinates on the ground, the feature or the event information, or certain phenomena) 

with the temporal information (time or age) that exists in the location, and the location is stable 

on the wide range. If Z(s) is a random spatial variable in the location (s), then the distribution 

data Z(s) has a prediction that is written with the following formula:  

𝐦(𝐬) =  𝐄[𝐙(𝐬)] =  ∫ 𝐱 𝐟𝐙(𝐬)(𝐱)𝐝𝐱
∞

−∞
 =  𝛍                , ∀ 𝐬 ∈ 𝐃                           (1) 
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his case is called First-Order Stationarity, but in Second-Order Stationarity, the random 

variable Z(s) is a second-order stationary variable if the prediction of the random variable is 

present and doesn't depend on the location (s). 𝑬[𝒁(𝒔)] =  𝝁             ,   ∀ 𝒔 ∈ 𝑫   

If the variance exists, it is defined as 𝐯𝐚𝐫 [𝐙(𝐬)] =   𝛔𝟐
𝒁(𝑺) = 𝐄[{𝐙(𝐬) − 𝐦(𝐬)}𝟐] 

𝐯𝐚𝐫 [𝐙(𝐬)] =  ∫ (𝐱 − 𝐦(𝐬))𝟐
∞

−∞

𝐟𝐙(𝐬)(𝒙)𝐝𝐱 

For each pair of spatial random variables [𝒁(𝒔), 𝒁(𝒔 + 𝒉) ] The covariance function is 

known and depends on lag only.  

𝐂𝐎𝐕 (𝐙(𝐬), 𝐙(𝐬 + 𝐡)) =  𝐄[(𝐙(𝐬)–  𝐦(𝐬))(𝐙(𝐬 + 𝐡)–  𝐦(𝐬 + 𝐡))]  =  𝛔 (𝐡) 

The second-order stationarity entails the presence of the covariance function and a specific 

finite variance function. The Intrinsic Stationary is more generalized than the previous 

stationarity in that the mathematical prediction exists and doesn't depend on the location (s). 

𝐄 [𝐙(𝐬)] =  𝛍 

The increase [𝐙(𝐬), 𝐙(𝐬 + 𝐡)  ] has a finite variance and doesn't depend on the location (s).  

𝒗𝒂𝒓[𝒁(𝒔), 𝒁(𝒔 + 𝒉)] =  𝑬[(𝒁(𝒔 + 𝒉)–  𝒁(𝒔))𝟐] =  𝟐𝜸(𝒉) 

The function 2𝛾(ℎ) is called a variogram function, while the stochastic process is called the 

random process, which is a group of random variables that depend on time. If we assume that 

there is the element (s) (sample space) for a random experiment (E), then the function:  

𝒁 = {𝒁(𝒕, 𝒔), 𝒕 𝝐𝑻 , 𝒔 ∈  𝑺}, 𝑻 ⊂  𝑹                                                                                       (2) 

It is called the random process or the stochastic process.((t), (t, s)), where T is the parameter 

time, S is the space, and the sample (the case) (states space), as T might be countable 

(discontinuous values) or uncountable (continuous) , and the same is with s [8], [13], [17]. 

2.2 Variogram Function:  

Usually, the variogram function is defined as the function of the following probabilities: 

𝟐𝜸(𝐡) = 𝐄[(𝐙(𝐬) − 𝐙(𝐬 + 𝐡))𝟐]                                                                                            (3) 

When dealing with the real data, the variogram function is estimated by the experimental 

variogram function in relation to the lag vector (h) as a set of observations that exist in the form 

of pairs with spaces between them lag(h) [4], [7], [9]. 

 𝟐𝜸∗(𝒉) =  
𝟏

𝑵(𝒉)
∑ (𝒁𝒊 − 𝒁𝒋)𝟐𝑵(𝒉)

𝒊=𝟏 , j=1,2…,𝑵(𝒉)                                                               (4) 

       There are three parameters for the variogram function, they are: 

• The range is symbolized with (a), and it represents the distance on the x coordinate or 

lag until the curve is stable.  

• Sill, where the value of 𝐜 + 𝒄𝑶  Represents the variance. 
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• The Nugget Effect stands for the random errors in the measurement units, which is the 

nugget effect of the function at h = 0, and it is also called the nugget effect or 

discontinuity, as shown in Figure (1): 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): An illustration of the variogram function characteristics  

 

Figure (1) shows the variogram drawing in general, where the x-axis is the lag(h) and the y-

axis represents the semi-variogram function γ(h) with the parameters: (nugget effect) is the 

lack of continuity, (still) is the variance, and (range) is the lag. The variogram function has the 

following properties:  

𝜸(𝒉) = 𝜸(−𝒉)
𝜸(𝟎) = 𝟎                                      , 𝒉 = 𝟎

𝜸(𝒉)

∥ 𝒉 ∥𝟐
→ 𝟎              𝐰𝐡𝐞𝐧         ‖𝒉‖ → ∞ 

 

For any real group {a1, a2, … … … , a𝑛} that verifies ∑  𝒎
𝒊=𝟏 𝐚𝐢 = 𝟎 we get the following 

characteristics:  𝚺𝐢=𝟏
𝐦  𝚺𝐣=𝟏

𝐦 𝒂𝒊  𝒂𝒋  𝛄 (𝒔𝒊 – 𝒔𝒋) ≤  𝟎 

Here, the process is isotropic, i.e.,  𝛄(𝐡) = 𝛄(‖𝒉‖). There is a relationship that connects 

the variogram and the covariance function, which  𝛄(𝐡) = 𝐂(𝟎)–  𝐂(𝐡), where γ(h) is Semi 

variogram function and C(0) is a Variance function and C(h) represents the Covariance 

function  [4] ,[7] . 

2.3 Spatiotemporal Random Function Model 

Let Z = {Z(s, t), s ∈ S, t ∈ T} be a group of spatiotemporal data or temporal data from a 

variable with spatial coordinates (𝑠 𝑖, 𝑡𝑖), i = 1, … … , n within the spatial domain S for the time 

interval T. Assuming that this definition satisfies the stochastic spatiotemporal function Z(s,t), 

predictions can be made Z(𝑠𝑜, t𝑜) For the unmeasurable spatiotemporal points [6], the model of 

the random function is given as follows: 

𝒁∗(𝐬, 𝐭)  =  𝐦(𝐬, 𝐭)  +  𝐞(𝐬, 𝐭)                                                                                               (5)                 
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Where m (s, t) is the deterministic part and e (s, t) is the stochastic residual part. The stability 

of the direction can be presumed in the time and place, and it can be allowed to change as a 

known function of covariates, and m represents the basic variance in the spatiotemporal process. 

The direction is developed by the regression-type model that connects the important variable z 

with the relevant covariates. The residual e represents the difference between the observations 

and predictions of the trend of the stationarity model of residuals for replication in Kriging 

processes results from removing the direction component, and they are distributed normally [7], 

[18], [17].   

2.4 Spatiotemporal Variogram Function 

The estimation of spatiotemporal direction is done by subtracting m(s) from the observations 

of the spatiotemporal level e(s, t), and the residual might be differences or correlations in space 

and time. The resulting residuals could be used in constructing the sample of the variogram 

function in time and space. The sample of the variogram function model diagram 2𝛾(ℎ, 𝑢)  is 

calculated as follows:  

𝟐𝜸(𝒉, 𝒖) =
𝟏

𝑵(𝒉,𝒖)
∑  𝑵(𝒉,𝒖)

𝒊=𝟏 [𝒆(𝒔, 𝒕) − 𝒆(𝒔 + 𝒉, 𝒕 + 𝒖)]𝟐

                                       (6) 

Where h is the distance separating the points in space and, u is the separation in the time, 

N(h, u) is the number of observations in Z that are separated by lag (h, u). The spatiotemporal 

structure of the variogram function is symbolized by 2γ(h, u), which is according to the 

distance or lag. Once the plot samples of the spatiotemporal variogram function model are 

calculated, a model with a few model variances can be modeled to estimate the spatiotemporal 

covariance and variance. The variogram function can represent the spatiotemporal variables.  

𝛾𝑆,𝑇(𝑠, 𝑡) in the following formula: 

𝜸𝑺,𝑻(𝒔, 𝒕) = 𝜸𝒔(𝒉) + 𝜸𝑻(𝒖) + 𝜸𝑱(√𝒉𝟐 + (𝒙, 𝒖)𝟐 )
                                            (7)  

Where x represents the spatiotemporal variance when the spatiotemporal distances and    

the spatial distance are merged, and 𝛾𝐽 Are the spatiotemporal variogram functions [19], [21]. 

2.5 Universal Kriging 

In this type of kriging, the data Zi, i= 1, …, n, are unknown at the points vi where i= 1, …, n 

is interpreted as outcomes of a random field that can be decomposed as the sum of the 

deterministic components of a random field Z(s) is stationarity and has a mean of zero. This is 

supposed to be: Z(s) = ∑ 𝛃𝐣𝒇𝒋(𝒔)𝐏
𝐣=𝟏  + R(s)                                                                          

Where R is a zero mean of a random field, which is represented as a function f, which is 

assumed to be known, together with the variogram function of the random field R, the 
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coefficients βj are secondary coefficients of the prediction. Under these assumptions, Universal 

Kriging (UK) can be defined as If we have so, then Universal Kriging overall estimate at a point 

so based on the spatial data Z(si) where i = 1, …, n is defined as an unbiased linear estimate . 

Z*(so) = ∑ 𝝀𝒊 𝒁(𝒔𝒊)
𝒏
𝒊=𝟏  

With the most accurate squared predictive error. The Universal Kriging can be written in the 

following form:  Z = Xβ + R                                                                                                     

Justifying the morphological similarity with the general linear estimation. The function to 

be minimized can be written in the case of a Universal Kriging as follows : 

φ (𝛌𝟏, 𝛌𝟐, …, 𝛌𝐧, m1, …, mp) = E[(Z(so) – ∑ 𝛌𝐢
𝐧
𝐢=𝟏  Z(𝐬𝐢))

2] – 2∑ 𝐦𝐣(∑ 𝛌𝐢
𝐧
𝐢=𝟏 𝒇𝒋(𝐬𝐨) )

𝐩
𝐣=𝟏  ,Where 

j = 1, …, p  and 𝑚𝑗 Are Lagrangian multiples, repeating the derivation along the lines of the 

above leads to a linear system. ⎾U λU = γU, where ⎾U is a matrix, λU is a value, and γU is a 

value. The Universal Kriging Coefficients can be determined by solving the linear system.⎾U 

λU = γU, therefore:  λU =⎾𝐔
−𝟏 γU. 

 Similarly, the squared prediction error can be calculated as in the case of Ordinary Kriging 

(OK) through the following equation [9], [10], [14]. 

𝛔𝐔𝐊
𝟐  (vo) = 𝛌𝐔

𝐓  𝛄𝐔= 𝛄𝐔
𝐓  ⎾𝐔

−𝟏  γU                                                                     (10)                                                                                                       
   2.6 Spatiotemporal Kriging Technique 

In a similar way to the pure spatial case in the regression Kriging (RK), separate predictions 

are of the direction, and the remaining components are performed, and then they are added 

together once again. The techniques of applying the steps differ in terms of satisfying the 

Spatiotemporal Kriging Technique (STK) on the random residuals through the best unbiased 

linear prediction 𝑒(𝑠𝑜, 𝑡𝑜). 

.𝒆∗(𝒔𝒐, 𝒕𝒐) = ∑ 𝝀𝒊𝒆(𝒔𝒊, 𝒕𝒊)
𝒏
𝒊=𝟏                                                                             (9) 

 where; 𝜆𝑖 Represents the weights of the spatiotemporal Kriging technique that is determined 

by the spatiotemporal waste structure. Also, 𝑒(𝑠𝑖, 𝑡𝑖) Are the residual of the samples in the area 

that is neighboring the prediction location? The optimum weights of the spatiotemporal Kriging 

technique are obtained via the following relation: 

 ∑ 𝝀𝒋

𝒏

𝒊=𝟏

𝜸𝒔𝒕(𝒔𝒊 − 𝒔𝒋, 𝒕𝒊 − 𝒕𝒋) + 𝛍 = 𝜸𝒔𝒕(𝒔𝒊 − 𝒔𝒐, 𝒕𝒊 − 𝒕𝒐),        ∀𝒋= 𝟏, … , 𝒏  

 ∑ 𝝀𝒊 = 𝟏   
𝒏

𝒊=𝟏
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Where the Lagrange multiplier μ is the number of observations that are confined to the 

research area. The final spatiotemporal estimation in the location (𝑠𝑜 , 𝑡𝑜) It is given by the 

components that remain together.  

𝒁∗(𝒔𝒐, 𝒕𝒐) = 𝒎∗(𝒔𝒐, 𝒕𝒐) + 𝒆∗(𝒔𝒐, 𝒕𝒐)                                                                 (11) 

The prediction covariance is estimated by: 

𝒗𝒂𝒓(𝒁∗𝒔𝒐, 𝒕𝒐) − 𝒁(𝒔𝒐, 𝒕𝒐)) = 𝝈𝟐(𝒎∗(𝒔𝒐)) + (∑ 𝝀𝒊
𝒏
𝒊=𝟏  𝜸𝒔,𝒕(𝒔𝒊 − 𝒔𝒐, 𝒕𝒊 − 𝒕𝒐) + 𝒎)    

     The vector of the error component is given by: 

𝝈𝟐(𝒎∗(𝒔𝒐)) = (𝐱𝒐 − 𝒙𝑻  𝒄−𝟏  𝒄𝒐)𝑻(𝒙𝑻  𝒄−𝟏  𝒙)−𝟏  (𝒙𝑶 − 𝒙𝑻  𝒄−𝟏  𝒄𝑶)                              (12) 

Where x is the sample of the covariance matrix remaining in the research locations, c is the 

covariates in the research location, and 𝑥𝑜 It is the vector of the variables [12], [20], [17]. 

2.7 Measures of The Predictive Performance with Time 

The predictive performance for each model is accomplished by verifying the (Cross 

Validation) as the accuracy of prediction validity with the time factor by the mean absolute 

predictive error (MAPE), which equals: 

𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑ ∑ |

𝜸(𝒔𝒊, 𝒕) − 𝜸∗(𝒔𝒊, 𝒕)

𝜸∗(𝒔𝒊, 𝒕)
|

𝒕𝒊
∗ 𝟏𝟎𝟎                                                                        (𝟏𝟑) 

Where N is the total number of available observations in the group, 𝛾(𝑠𝑖, 𝑡) is the 

measurements of the pollution in the counter i and the unit of time in the group t, 𝛾∗(𝑠𝑖, 𝑡) 

Represents the root mean square error (RMSE) can be found [20]:  

𝑹𝑴𝑺𝑬 = √
𝟏

𝐍
∑ ∑ (𝛄(𝐬𝐢, 𝐭) − 𝜸∗(𝐬𝐢, 𝐭))

𝟐
𝐭𝐢                                                                              (14)                                                                                   

3. Data Analysis 

We relied on spatiotemporal data with their actual locations from research published in the 

College of Environmental Sciences by researcher Salem Rabie Zannad (2020), and the title of 

the research was "Industrial Pollution and Environmental Impact Assessment of Industrial 

Areas in the City of Mosul." University of Mosul. 

3.1 The area of study   

The area of the study is in Mosul city in the northern west part of Iraq, which is between the 

longitude 41 º - 44º to the east and latitude of (41º - 44º) to the east and latitude of (35º - 37º). 

The Al Karama industrial zone is in the eastern part of Mosul (the left bank of the city). The 

area of the study is famous for the factories and mills in addition to the repair and maintenance 

shops and garages that represent an important factor to the city. The real spatiotemporal data of 

the industrial zone in Mosul city is the data adopted in this research, and it consists of (192) 
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real values for Arsenic (As) and Chrome (Cr), which cause pollution to the soils of the industrial 

zone with the course of time and for three seasons: (Autumn, Winter, and Spring). 

 
Table (1): Results of the variogram functions for Arsenic and Chrome metals for all the trends 

 

Table (1) below contains the results of the variogram function according to equation (1) for 

all the directions of the compass with the basic angles of the compass (θ=135°, 45°, 90°, 0°), 

where G1 represents the angle θ=0°, G2 represents the results at the angle θ=90° with lag (h), 

whereas G3 stands for the results at the angle θ=45° and G4 represents the results at the angle 

θ=135° with lag (h) of h = 1.414, 2.82, …, 9.898 for the case of Arsenic and Chrome metals. 

The results of the mean variogram function where the first row is G5 represents the mean of the 

two angles θ = 90°, 0° because the lag is equal when h =1, 2, …,7, the second row shows the 

mean of the two angles θ = 135°, 45° because the lag is equal in the case of the Arsenie and the 

Chrome metals. 

 

 

 

 

 

 

 

Figure (2): Curves of the variogram function for the Arsenic and Chrome metals 

Arsenic As 

G1 0.932 1.260 1.491 2.093 3.151 3.796 5.108 

G2 7.096 14.640 18.552 21.829 22.486 16.377 30.059 

G3 8.373 17.082 20.769 26.197 31.531 28.323 52.590 

G4 6.243 13.054 16.192 18.917 17.085 9.182 12.410 

G5 4.014 7.950 10.022 11.961 12.819 10.086 17.583 

G6 7.308 15.068 18.480 22.557 24.308 18.753 23.500 

Chrome Cr 

G1 0.364 0.322 0.270 0.380 0.602 0.481 0.656 

G2 0.425 1.040 1.880 3.130 4.222 5.547 7.119 

G3 0.618 1.336 2.521 4.126 5.326 6.718 7.507 

G4 0.410 0.819 1.136 2.180 3.496 2.914 2.722 

G5 0.848 1.340 1.968 2.957 3.888 5.075 6.580 

G6 1.153 2.098 3.118 5.204 7.160 7.502 6.250 

0 5 10
0

50

100

150

200

       (a)                 h lag

 v
ar

io
gr

am

 

 
AS 0°

90°

45°

135°

0 5 10
0

50

100

 v
ar

io
gr

am

       (b)                h lag

 

 
 AS(0°,90°)

(45°,135°)

0 5 10
0

5

10

15

       (c)                 h lag

 v
ar

io
gr

am

 

 
Cr 0°

90°

45°

135°

0 5 10
0

2

4

6

8

 v
ar

io
gr

am

       (d)                h lag

 

 
Cr(0°,90°)

(45°,135°)

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq


Ali MH, Dhahir GM. / Al-Kitab Journal for Pure Sciences (2023); 7(2):99-114.

 

 
Web Site: https://isnra.net/index.php/kjps   E. mail: kjps@uoalkitab.edu.iq

 
108 

 

Figure (2) shows the curves of the variogram functions as the curves in (a) for all the angles: 

the blue curve is when θ=0°, the green curve is when θ = 90°, the red curve is when the angle 

is (θ=45°) and the discontinuous dots curve is when θ =135°. As for (b), it represents the mean 

of the two variogram functions at the angles (0°and 90°) represented by the red curve, and the 

black curve represents the angles (45° and 135°) for Arsenic (As). The same can be said for the 

curves in figure (c) for all the angles related to Chrome, and figure (d) represents the mean 

variogram function of Chrome. 

Table (2): Results of the characteristics of the variogram function means for 

Arsenic and Chrome metals for all the angles. 

        Metal 

 

Statistics 

As Cr 
)o,90o(0 )o,135o(45 )o,90o(0 )o,135o(45 

Min 4.014 7.308 0.848 1.154 

Max 17.58 32.5 6.58 7.503 

Mean 10.63 19.85 3.237 4.641 

Median 10.09 18.75 2.958 5.204 

Range 6 8.485 6 8.485 

Table (2) shows the results of the variogram function for all the angles, where (Min) stands 

for the point of nugget effect, (Max) represents the variance, (Mean) represents the mean, 

(median) represents the median, and (Range) stands for the range in the case of Arsenic and 

Chrome metals.  

 

 

 

 

 

 

 

Figure (3): Results of variogram function of the spatiotemporal data of Arsenic and Chrome 

metals in all the directions of the compass  
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Figure (3) shows the variogram functions, where (a) represents the result of the variogram 

function at the angle (0o) with time. Where (t =1, t=2, t=3) between the lag on the x-axis and 

the variogram function on the y-axis and the same is for the rest of the angles in the figure; (b), 

(c) and (d) for the angles 45, 90 and 125 o respectively. In Figure (3), the curves of the functions 

(a) as (t=1, t=2, t=3)  between the lag on the x-axis and the variogram function on the y-axis and 

the same for the rest of the angles in figures b, c and d for the angles (45°, 90°, and 135°) 

respectively.  

Table (3): Results of the variogram function mean of Arsenic metal at (t=1, t=2, t=3) 

G5 (T=1) G6(T=2) G7(T=3) 

9.667 9.224 9.828 

19.753 18.248 20.070 

24.566 21.415 24.895 

23.881 20.355 25.404 

13.380 11.818 14.965 

31.483 26.882 34.139 

60.007 48.866 66.623 

Table (3) shows the results of the variogram function mean, where G5 represents the 

results of the variogram function mean at (T=2), and G7 represents the variogram function 

mean at (T=3). 

 

 

 

 

 

 

 

 

 

Figure (4): Results of variogram mean of the spatiotemporal data of Arsenic.  

 

Figure (4) shows three curves of the variogram. The blue curve shows the average at (t=1), 

the red curve shows the average at (t = 2), and the black curve shows the average at (t=3). 
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Figure (5): of the spatiotemporal data of Chrome in all the directions of the compass 

Figure (5) shows the curves of the variogram functions. Part (a) represents the Results of the 

variogram function at the angle (0o) with the times (t = 1, t = 2, t = 3) between the lag on the x-axis 

and the variogram function on the y-axis. The same is true for the rest of the angles in the parts 

(b), (c), and (d) in the figure for the angle. 

Table (4): variogram function of the mean of Chrome.  

G5 (t=1) G6(t=2) G7(t=3) 

0.789 0.848 0.803 

1.363 1.340 1.284 

2.150 1.968 1.917 

3.511 2.957 2.841 

4.825 3.888 3.865 

6.029 5.075 5.383 

7.775 6.580 6.940 

 

Table (4) represents the results of the mean variogram function at time (t = 1,2,3). G5 

represents the mean of the angle (0º), G6 represents the mean of the angle (90º), and G6 

represents the mean of the angle (45º). 
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Figure (6): Results of an average of variogram function at (t=1, t=2, t=3) for Chrome 

Figure (6) includes three curves of the mean variogram function for Chrome. The blue curve 

shows the mean at (t = 1), the black curve shows the mean at (t = 2), and the black curve shows 

the mean at (t = 3).  

Table (5): Results of the variogram function characteristics for Arsenic and Chrome at (t=1, t=2, t=3) 

          Time 
Statistics 

As Cr 

t=1 t=2 t=3 t=1 t=2 t=3 

Min 25.73  26.64  20.06  16.01  12.21  11.96  

Max 437.8  509.6  378.9  257.8  176.7  120  
Mean 173  176.7  142.7  97.73  66.23  52.14  

Median 132.3  116  102.3  68.67  46.39  39.49  

Range 6 8.485 8.485 6 8.485 8.485 
 

Table (5) shows the results of the variogram function characteristics for all the times (t=1, t 

= 2, and t=3) for the average of the variogram function for Arsenic and Chrome. Min represents 

the nugget effect point; Max represents the variance. Mean represents the average, Median, and 

Range. 

Table (6): Parameters of variogram function of the spatiotemporal data of Arsenic and Chrome 

Range 

(m or 

month) 

Nugget 

Effect(m2) 

Sill 

(m2) 

Theta or 

Time 
Model Metal 

Parameters 
 Data  

6 4.014 17.58 (0o,90o) 
Spherical As Space 

8.485 7.308 32.5 (45o,135o) 

6 9.668 60.01 t=1 

Spherical As Spatiotemporal 8.485 9.225 48.87 t=2 

8.485 9.829 66.62 t=3 

6 0.848 6.58 (0o,90o) 
Exponential Cr Space 

8.485 1.154 7.503 (45o,135o) 

6 0.789 7.775 t=1 

Exponential Cr 

 

Spatiotemporal 

 

8.485 0.848 6.58 t=2 

8.485 0.803 6.941 t=3 
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Table (6) shows the results of the variogram function parameters for the spatiotemporal data 

of Arsenic and Chrome. It demonstrates the model approximate to the covariance function 

through the characteristics of the variogram functions and their means in all the angles with the 

same lag as mentioned earlier, and it also shows the parameters of all the times (t =1, t =2 and 

t=3) of the mean of the variogram function of Arsenic and Chrome. The table shows the main 

parameters of the variogram function with the spatial pattern in the angles (0o, 90o) and 

(45o,135o) as the table includes the parameters of variogram parameters as (sill) stands for the 

variance, (nugget effect) represents the nugget effect, while (range) represents the range with 

(meter or month). As for the spatiotemporal, it shows (t = 1,2,3) for the data related to the time 

of the two metals (Arsenic and Chrome).  

Table (7): Selected prediction values with the performance of prediction measures   

MAPE 0.13244 0.1156 0.1002 0.3372 

RMSE 0.1451 0.3219 0.2117 1.0089 

Z*(s) 32.574 27.1918 18.2894 25.5074 
 

Table (7) shows some values to be predicted as Z* represents the values to be predicted, and 

Z stands for the actual values with the standards of error (MAPE and RMSE). From the results, 

it is noticed that the standards of error are small in value, and this indicates the validity of the 

prediction process of the data about which prediction rests compared with the original data.  

4. Conclusions:  

The selection of the mathematical model and the evaluation of the impartiality of the models 

are necessary to improve the prediction by applying the spatiotemporal data and drawing the 

curves of the spatiotemporal distribution of arsenic and chromium data in soil pollution in the 

study area. From Table (6), we notice that the variogram function has the aspherical model in 

the case of spatial data and spatiotemporal data for arsenic metal, while in the case of spatial 

and spatiotemporal data, the variogram function has an exponential model in the case of 

chromium metal. We note that there is a great similarity in the properties of the covariance 

functions(spherical model and exponential model) through forecasting and taking into account 

the criteria for the correctness of the prediction as well as the least variance and the conditions 

of the results obtained in obtaining covariance models with convergent parameters for the best 

prediction show us the property of uniform spatial distribution of data in all directions of the 

compass and through the application of the kriging technique, the results showed the correctness 

of the prediction and the completion methods showed similar performance between the kriging 

technique. Finally, the proposed model of the spherical curve and the exponential curve 
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approaches 91% of the model of covariance functions for common spatiotemporal data with 

very small error rates when forecasting.   

Universal kriging (UK), the method of spatial or temporal multiple regression, is a model 

that divides a random function into a linear set of drift and a random element that is the 

remainder. 

Through this research, we recommend using infection disease data and atmospheric gas 

pollution data and entering three-dimensional data to obtain a proposed mathematical model 

and other spatiotemporal forecasting methods and linking them to artificial intelligence 

methods and the fuzzy method. 
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