Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.
https://doi.org/10.32441/kjps.08.01.p5

KIPS AlKstab Journal for Pure Sciences 1AS)

At o For ISSN: 2617-1260 (print), 2617-8141(online) ﬁ
2 N7

AN https://isnra.net/index.php/kijps) a1 !

BANK OF PASSWORDS: a secure Android password
manager implemented based on specific requirements

Hussein Abdulkhaleq Saleh”

Directorate General of Education in Dhi Qar., Iraq

*Corresponding Author: hussein.abd.alkhalig@gmail.com

ORCID: 0009-0003-3426-7168

Citation: Saleh HA. BANK OF PASSWORDS: a secure
Android password manager implemented based on specific
requirements. Al-Kitab J. Pure Sci. [Internet]. 2024 Mar 12
[cited 2024 Mar 12];8(1):40-62. Available from:
https://doi.org/10.32441/kjps.08.01.p5.

Keywords: Secure warehouse for passwords,
Passwords vault, Passwords keeper app, Android

application.

Avrticle History

Received 16 Jan. 2024
Accepted 08 Mar. 2024

Available online 12 Mar. 2024

©2024. THIS IS AN OPEN-ACCESS ARTICLE UNDER THE CC BY LICENSE
http://creativecommons.org/licenses/by/4.0/

OMoN

Abstract:

Passwords serve as a vital means to safeguard our digital accounts. Many individuals resort to
conventional methods like writing down passwords on paper or storing them on cloud services,
often overlooking security risks, forgetting, and divulging is the most notable, which leads to loss
of access to accounts, or potential breaches. In this paper, we propose the development of an Android
application named "BANK OF PASSWORD" to address this issue. Our work focuses on creating a
lightweight app equipped with essential functionalities desired by users, including password
addition, updating, copying, searching, and deletion. To ensure the security of stored passwords, our
approach incorporates various protective measures, such as access restriction through a login
process and the utilization of SHA256 hashing and AES256 encryption for password encryption,
where stored passwords are securely encrypted and stored as ciphertexts within an SQL.ite database.
A fingerprint authentication was implemented as a second login method. Extensive testing of the
application demonstrates the successful functioning of all proposed features and requirements on

devices running API level 26 or above.

Keywords: Secure warehouse for passwords, Passwords vault, Passwords keeper app, Android

application.

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

e

40

https://doi.org/10.32441/kjps.08.01.p5
https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
https://isnra.net/index.php/kjps
mailto:hussein.abd.alkhaliq@gmail.com
mailto:hussein.abd.alkhaliq@gmail.com
https://doi.org/10.32441/kjps.08.01.p5
http://creativecommons.org/licenses/by/4.0/

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

Glallia Ao sl 0345 a3 Android aladl (el g e clalS a1 g all cilals iy
dddaa
“alla GlAle G

Bl 5 53 8 53 bRl kel

hussein.abd.alkhalig@gmail.com

:LAM\
LS AU e il §hall) a8V e el oy Aad 5l Lilbs Aland pnld Aoy 5 pall IS yiind
s oS sl gl 5l (el Hhlae e o sl L Wle 5 dalandl cleadll e Lei a3 5l Gl e 5 al
Dnshl o s A8l oda 8 Aldine iy A sl eclaall) Jgeasl) oo) g2 g5)5 SV)
cailla gl 8 g ol (guadal oL e Ulee S 5 AISSAD oda Axllaal " g pall lalS @l ey Android (ks
el Glanal Lgida 5 lgie Canall 5 Lgdnsi 5 Lgfanty) 5 yall dalS dilia) lld 8 Ly ¢ saiiusall Ly 2y G 4y
aladiul g (Jsaall Jaaasi dlee JA (e J s sl 05 S e siie Ailea Sile) jaf Lingd Cpanaly o) 5 pall el
Lo 3805 (gl S A3 3l g pal) lalS 5l o5y Cum ¢ 5 pall AalS il AES256 i s SHA256 45 3as
g Joaall Jinnl (5)31 A S pua¥) daay Bdbias 285 25 XX SQLite lily 338 Ja)2 6 jila (a paiS
API level alais Joad il 3 5ea¥) e da yiall cillbviall 5 <l jaall gpend mealill Joaodiill gadaill (Sl LaY)
Android alas (e caaal jlaa) 5l 26

ANAroid Gk ¢y s_yal) Ll Jain Gl ¢ 5 yall LS 1 3A ¢ g yal) LIS el g3 sisa sdualifalf cilalsl)

1. INTRODUCTION:

In today’s digital landscape, individuals possess multiple private accounts, including
significant ones such as banking, social networks, websites, emails, and even Wi-Fi networks.
These accounts are typically protected by private passwords, known only to the account holder,
serving as a barrier against unauthorized access. However, the management of these passwords
has become a significant challenge, leading to a pressing need for a secure and efficient
solution. This paper is motivated by the desire to address this issue and enhance the security
and convenience of password management for Android device users. It is worth noting that
many users often tend to reuse the same password across multiple accounts for the sake of
convenience. This practice poses a significant security risk, as a compromise of one password
can lead to unauthorized access to several accounts [1]. Therefore, it is highly recommended to
utilize unique and complex passwords for each user account [2].

Managing multiple passwords can become a challenging task, potentially resulting in users
forgetting their passwords and losing access to their accounts. Some individuals resort to

writing down details of their passwords on paper, or storing them in a text file in cloud services
e —
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

41

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq
mailto:hussein.abd.alkhaliq@gmail.com

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.
—
like Google Drive, or OneDrive, attempting to keep them secure. However, these traditional

methods are still susceptible to security threats, including loss, damage, or unauthorized access
to sensitive information.

Motivated by the need to provide a secure and user-friendly solution to these challenges, we
propose developing a mobile application that provides a secure storage environment for user
passwords. Given that most users employ devices powered by Android OS, which holds a
significant market share of 67.72% [3], the proposed application will be tailored specifically
for Android OS devices. The ‘Bank of Passwords’ app aims to provide a secure solution for
Android users to manage their passwords, where, focuses on simplicity, usability, offline, free-
cost, open-source, and available for most Android devices while still implementing robust
security features. To ensure a satisfactory user experience, the application should offer
convenient password management functionalities while prioritizing security. This necessitates
a thorough determination of the requirements before the implementation process .

This paper aims to outline the application's design and implementation processes,
demonstrating how it addresses the challenges of password management while enhancing user
security. The paper is organized as follows: Section 2 covers user requirements and technical
requirements for the app, Section 3 provides a brief implementation plan, Section 4 addresses
the Ul design processes, Section 5 covers the implementation of background processes, Section

6 is dedicated to test the application, and Section 7 concludes the paper.

2. CORE REQUIREMENTS:

For developing useful and usable applications, we have to understand user needs; and the
techniques for implementing them, which means there are user requirements and technical
requirements [4].

2.1 User Requirements: User requirements can be written from the perspective of what the

users need to satisfy them [4]. In our approach, we will adopt the following requirements:

« The application offers users two login methods, either by entering a password or by using
their fingerprint if supported.

« The user can assign a login password when the application launches for the first time for
security purposes.

« The application forces the user to login every time he runs the application.

« For every new password to be added, the app must store a name and value.

« The application forces the user to use a unique name for every new password to be stored.

« The application can display all stored passwords as a scrollable list.

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

42

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.
—
« The user should be able to copy any password value stored inside the application and paste

it where needed.
« The application provides the user with the ability to edit any stored password easily (name
or value or both).
« The application allows the user to delete any password stored inside the application.
« The user can search for any password stored inside the app.
« The application allows the user to change the login password.
« The user can erase (reset) all stored data inside the application with one click.
« The user can exit the application.
« The login-password length should be a minimum of eight characters.
« There is no need to get any access permissions from the user.
« The language of this application is English.
« The application Works offline.
2.2 Technical Requirements: To meet users’ requirements in Sec. 2.1, and make it feasible,
we need to define some technical requirements for describing how the application will be
implemented practically [4], plus illustrate how the background processes would be performed
in this application. For such an application, our approach adopts the following technical

requirements:

« For development, a reliable IDE should be used.

« A recommended Android API level must be used for development.

« The programming language that is used for development is preferred to be a popular and
easy option for beginners and hobbyists.

- For storing the data of the user passwords, the application should use an efficient storage
technic.

« The application must check and confirm that the new stored password has a unique name.

« The stored data (especially password values) must be secured by encrypting the plaintext of
all stored passwords.

« The application must have the ability to decrypt all encrypted passwords to their plaintext
again when needed to display them in the GUI.

 To assign a password for login, such an app must have the ability to store this kind of
password and retrieve it when compared with the entered value in the login process.

« When a login password is assigned, the application must force the user to write this password

twice in two different fields for more confirmation.

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

43

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.
—
« For security level increase, the login password should be encrypted and stored as a

ciphertext.
« The ciphertext of the login password should be used as a key for encrypting all stored

passwords.

3. IMPLEMENTATION PLAN:

Before proceeding with designing and programming, it’s essential to prepare an appropriate
IDE, where we intend to use Android Studio because it’s the official IDE for developing
Android applications [5]. According to a Google announcement on 19 November 2020, Google
Play Console will require all new apps to target API level 30 (Android 11) or above as reported
by Android Developers [6].

For that reason, our app will be developed with API level 32 (Android 11) as a target, and
API level 26 as minimum. For programming, there are many languages for developing Android
apps such as Java, Kotlin, and C++. We plan to develop this app with Java, to produce a small
apk file size [7], and as being the better option from the beginner’s point of view [8]. Based on
the common architectural principles mentioned by Android developers for best application
development practices, each application should have at least two layers:

1.a Ul layer.

2.a data layer.

The Ul layer is accountable for presenting the application data on the screen, while the data
layer encompasses the business logic, consisting of rules that govern the creation, storage, and
manipulation of data within the application [8]. These processes occur independently of the
user in the backend. Drawing from the aforementioned information, we can divide the
implementation approach into two essential components:

1. Ul Design.

2. Back-end Processes Implementation.

As we transition from the theoretical framework and requirements, it becomes pivotal to
visualize the operational flow of the application to grasp its comprehensive functionality and
user interaction dynamics, as described in Figure 1. This diagram will serve as a preliminary
roadmap in the next phases, guiding the development process and ensuring that all user
requirements are met effectively and efficiently.

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

44

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

yes

invoke login process

launch app

if login password
was assigned

[Iogm with password, or with fingerprint (if supportecl)]

notify user

no

copy selected
password to
clipboard

delete
invoke password) password
delete process
delete selected password
after user confirmation

. search for
invoke search password
process

Search for a password by]

name and display results

invoke reset reset app
process

reset app and delete all
data after user confirmation

finish app

exit

check login success

A

no

Envoke assign-login-password process

password value meets the

assigned

requirements

encrypt and store login password)

[invoke Main Activity }

Add New Password

invoke
Change_Login_Password
process

entered value meets'
the requirements

copy password ¢ ‘
| Button-click-listener

{ J

Change Login Password Edit Password

invoke Edit-Selected-
Password process

{

]

entered value meets
the requirements

notify user

yes update login
password

invoke
Add_New_Password
process

yes _Jupdate selected

Y

for stored
user passwords

display stored
passwords

check

exist

entered value meets
the requirements

ldismiss

store the new
password

password

FIGURE 1: A Flowchart depicts the core functions and their processes in the ‘Bank of Password’ app.

4. Ul DESIGN:

In this context, it is essential to gain a graphical design perspective to better comprehend the

user requirements outlined in Section 2.1. This understanding allows us to visualize and create

a feasible graphical user interface (GUI). Before embarking on the design phase, it is crucial to

identify the primary tasks that the application will be carrying out based on the user

requirements. Additionally, establishing the execution workflow, as depicted in Figure 2, helps

to delineate the sequence of actions and interactions within the application.

4.1 Application’s Main Tasks:

1. Assigning Login-password for the first time.

Login process.

Add a new password.

Delete

password.

2
3
4. Display the stored passwords.
5

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

45

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

Copy password.
Update stored passwords.

Search for a password.

© © N o

Change the login password.
10. Reset to default.

11. Exit.
copy password
display stored » delete password
passwords
e add password update password
first-time a]élggm 9
app running password search for
password
main Ul
» change login
assword
regu‘lar —»| login p
running
reset the app
exit

FIGURE 2: Diagram illustrating the workflow of Ul functions execution.

Determining the main tasks and Ul execution workflow provides a clear understanding and
serves as a foundation for GUI building. These insights play a crucial role in shaping the
background processes and programming logic required to implement all the application tasks.
From a design perspective, each task can be visually represented on a single screen, and the
most effective approach in Android development is to leverage the concept of activities. An
Android activity represents a single screen that users see and interact with on their device [9],
serving as a window for the application to present its user interface.

Considering the nature of the tasks at hand, it becomes evident that certain tasks in our
application necessitate dedicated activities, such as the login task and changing the login
password. In contrast, others can be accommodated within the same activity, such as displaying
the password list and performing a search. To address this situation, adopting a multiple-activity
approach is recommended to ensure the appropriate graphical interface is built to cater to all
tasks effectively.

4.2 Login-Password-Assigning Activity Design: Although this activity is not designated as
the launch activity, it serves as the initial screen displayed to users after installing the
application. The reason behind this design choice stems from the user requirements outlined in

Section 2.1. Our application necessitates a login process to gain access, which, in turn, requires

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

46

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.
e —

a login password. Therefore, it is crucial to prompt the user to assign a login password before

proceeding with any other actions within the application. The suggested layout components for

this activity are depicted in Figure 3.

Welcome to you in

BANK OF PASSWORDS

To protect your privacy, you must assign a password
]

for login

Password

Re Enter Password

NEXT

FIGURE 3: Layout design of the login-password-assigning activity.
(This layout consists of five TextViews for labeling, two EditText for getting login-password values, and a Button for executing.)
4.3 Login Activity Design: Once the user has been assigned a login password during the
initial launch of the application, our app ensures user access verification in subsequent runs
by initiating a login process. The user is granted entry only when the login password matches
the correct value, as specified in the user requirements outlined in Section 2.1. Therefore, in
regular app launches, it is imperative to display this activity as the first screen. The layout

components for this activity are visually depicted in Figure 4.

BANK OF PASSWORDS

Enter Your Access Password m_m

FIGURE 4: Layout design of the Login Activity

(This layout consists of five TextViews for labeling, two EditText for getting the values, on a Button for executing.)

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

47

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

e —
4.4 Main Activity Design: The main activity is the central hub where the primary operations

of the app take place, aligning with the execution workflow illustrated in Figure 2. The final
Ul layout design for this activity can be observed in Figure 7. The layout of this activity
incorporates the following components:

- A constraint layout is utilized as the container for organizing all the elements.

- A TextView is positioned in the top left corner, dedicated to displaying the application
name.

- An ImageView, clickable and located in the top right corner, features a settings icon. When
clicked, it triggers the emergence of a Popup Menu, as demonstrated in Figure 5.

- A RecyclerView is situated in the middle of the screen, serving as a list to showcase the
stored passwords. The proper functioning of this element requires the creation of a
ViewHolder and an Adapter. The ViewHolder allows for customization of the appearance
and behavior of each list element (list rows), while the Adapter is responsible for
associating the data with the ViewHolder views. In our context, we recommend designing
a custom ViewHolder layout that presents the information of each stored password
(including the name and value), along with the relevant operations (update, copy, delete)
for each list element, as depicted in Figure 6.

- A FloatingButton is included to facilitate the addition of new passwords.

. At the bottom of the screen, a SearchView is provided to enable password searching

s

Change Login Password |

functionality.

Reset

Exit

FIGURE 5: Layout design of the Setting Menu and its items.

(This layout consists of three items: change the login password, reset the application, and exit.)

Password Name :

'_Ell’xl

Password Value :

Fassvoraame:]

Pesorguaie]

FIGURE 6: Layout design of the ViewHolder
(This layout contains: a constraint layout to hold all components; two TextViews for labeling; two TextViews for displaying password info; three
clickable ImageViews for operations (copy, edit, delete)
L

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

e
48

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

FIGURE 7. - Final layout design of the Main Activity.

4.5 Store-New-Password Dialog Design: When the user clicks on the floating button '+' in
the main activity, depicted in Figure 7, a dialog containing a custom layout will be displayed.
This dialog enables the user to add a new password. As per the user requirements mentioned
in Section 2.1, each stored password should include two essential pieces of information: the

name and the value. The layout design for this dialog is illustrated in Figure 8.

store new password

password name
password value

confirm value

FIGURE 8: Layout design of the Store-New-Password Dialog

(This layout consists of a constraint layout for holding all components; four TextViews for labeling; three EditTexts to get the values; two buttons for

actions (one for cancel and the other for adding)

4.6 Edit-Selected-Password Dialog Design: As depicted in Figure 6, the application
provides the user with the capability to update the stored information (name or value) of any
password listed by selecting the corresponding update button (pen icon) associated with that
specific password. To accomplish this process, we need to design a suitable dialog that allows
the user to enter the new values. The design of this dialog is presented in Figure 9.

e
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

49

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

Edit Selected Password

Password Name

Password Value

CANCEL UPDATE

FIGURE 9: Layout design of the Edit-Selected-Password Dialog.

(This layout consists of a constant layout for containing all components; three TextView for labeling; two EditText to display the current values and
edit them at the same time; two buttons one for cancellation, and the other for updating.)

4.7 Change-Login-Password Dialog Design: To enable the user to change the login
password, a dialog should appear on the screen when the user selects the corresponding item
in the setting menu (labeled as 'change login password' as shown in Figure 5). The design

details of this dialog can be found in Figure 10.

change login password

old password

new password

confirm password

CANCEL

CHANGE

FIGURE 10: Layout design of the Change-Login-Password dialog.

(This dialog layout consists of a constant layout for containing all components; four TextView for labeling; three EditText to get the values; two buttons

one for cancellation, and the other to change.)

4.8 The Rest of The Tasks: Upon revisiting the user requirements (in Sec.2.1), it becomes
evident that the remaining tasks in our app (copying a password, deleting a password, resetting)
do not necessitate the use of activities to fulfill their functions. These tasks no longer require
data input or output. Instead, they may involve confirming or notifying dialogs (such as
AlertDialog or Toast) to inform the user about their actions. The handling of these processes
will be discussed in detail during the implementation of the back-end processes.

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

50

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

e

5. BACKGROUND PROCESSES IMPLEMENTATION:

Once the Ul designing phase is finished, it is essential to establish the necessary connection

between all application Ul components and the corresponding programming logic to ensure
their functionality aligns with user and technical requirements. To create a feasible roadmap for
implementing the back-end processes, we propose defining a sequential flow for the execution
of the application Ul, starting from launch until exit. This planned sequence will serve as a
guide for the implementation phase, as illustrated in Figure 11.

no yes

if login password
has been assigned

[assngn a login password] [Login]

[|
v 3

[Main activity]

do something
(operations)

FIGURE 11: Sequential flow of application Ul execution processes.

By examining the processing sequence depicted in Figure 11, we can deduce that the initial
logic in our application involves verifying the state of the login password to determine the
appropriate activity to launch. This situation encompasses two possible states: either the login
password has been assigned or it hasn't. To accomplish this straightforwardly, we can create an
empty activity (referred to as the Launch activity in Section 5.1) that solely performs the check

to determine the true case, and subsequently deploys the corresponding activity accordingly.

5.1 Launch Activity: The Launch Activity serves as an empty activity running in a background
thread. Its primary purpose is to check whether a login password has been previously saved or
not, without the need for displaying any graphical user interface (GUI). This involves retrieving
the stored login password, which requires determining the appropriate method of storing it
within the application. In our case, the recommended approach is utilizing the
SharedPreferences APIs, as suggested by the Android developers' website, as it is suitable for
storing a small collection of data within our app [10]. Assuming the SharedPreferences APIs

are employed, the role of this activity is to search the SharedPreferences for a previously stored

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

e

o1

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

e

login password, allowing it to make the necessary decision, as illustrated in Figure 12.

Consequently, this activity is designated as the default launch activity in our application,

requiring modifications to be made to the manifest file.

start app

Launch Activity

get the login password from
SharedPreferences

yes if login password no

was assigned

~
{ launch assign-login-

[Iaunch login activity] password activity

FIGURE 12: Flowchart illustrating the logic of the Launch Activity.

5.2 Login-Password Assigning Process: When the Login-password-assigning activity (in

Sec. 6.2) is triggered (as depicted in Figure 3), the user is prompted to enter his password and

proceed by tapping the 'NEXT' button. At this point, in accordance with the technical

requirements (detailed in Sec. 2.2), the subsequent procedures should be sequentially executed

in a background thread of the invoked activity:

1.

2.

Get password value: where two fields are holding the passwords that must be obtained
(One for the password, and the other for confirming as shown in Figure 3).

Verify password value: checking the identically and length of the two values, where the
length is a minimum of eight characters according to the user requirements (see Sec. 2.1).
If those conditions are true, then the application can take any one of the two values as a
login password.

Encrypt password value: In general, one-way hashing is one of the best security options
in cryptography, where there are a lot of functions in this field such as MD5 and SHA256
[11]. In Android, the MessageDigest class provides the functionality of a message digest
algorithm. Based on some recommendations to improve the security of the login process
[12], we intend to use the SHA-256 Hash function to generate a digest from the login
password.

Store the generated digest: The generated digest will be stored as a Hex string in the
SharedPreferences, as described clearly in Figure 13.

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

e

52

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

invoke assign-login-
password activity

¥
__get entered password
/ value

if password field equals to
confirm-password field
and password length == 8

notify user

encrypt password
value using SHA-256

v
launch Main store the digest in
Activty SharedPreferences

FIGURE 13: A flowchart illustrating the Login-password Assigning Process.

5.3 Login Process: Upon invocation of the login activity (as depicted in Figure 3), the user
is prompted to enter his login password. Our objective in this stage is to generate a digest
using SHA-256 from the entered value. This is achieved by converting the entered value to a
Hex String as the initial step. Subsequently, the generated digest is compared with the stored
digest. If the two digests are found to be identical, the login process is deemed successful,

allowing the user to proceed to the main activity as outlined in the steps illustrated in Figure

14.
[invoke login activity]
v

a

get entered password
value

\ J

v

generate digest from entered i
value using SHA-256

!

retrieve stored digest
from SharedPreferences

if the generated digest
equals to stored

notify user

launch Main
Activty

FIGURE 14: A Flowchart illustrating the login process.

L
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

53

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

—

5.4 Additional Login Method: In several cases, login using the traditional password method
is not enough to provide the security level required to protect the data, because the login
password is exposed to disclosure, which means we should employ other techniques and
methods to increase the security level to protect user data (passwords). In this section, we will
explore another technic that will be included with our app to enable login securely relying on

user biometrics.

5.4.1 Login with fingerprint: Fingerprint technology in Android has become increasingly
popular for authentication and authorization purposes, particularly in securing smartphones
and protecting security-sensitive operations. It refers to biometric-based authentication and
authorization using the fingerprint APIl. This API allows mobile apps to recognize and
authenticate users based on fingerprints, providing better security for security-sensitive
operations [17].

To implement this feature in our app, first add the required dependencies, then get the
necessary permissions:

e <uses-permission android:name="android.permission.USE_BIOMETRIC"/>

e <uses-permission android:name="android.permission.USE_FINGERPRINT"/>

To check if the user device can authenticate using fingerprint, android includes a class
called "BiometricManager™ which provides access to the biometric hardware and software on
the device. If the checking process is complete with success (there is a sensor and stored
fingerprint), it means that the device is ready for biometric authentication and waiting for the
user to put his finger on the sensor. To execute the authentication task on a specific thread, we

can use the 'Executor’ class.

To handle the biometric authentication process, we can use the 'BiometricPrompt' class. To
hold the information for the biometric prompt such as the title, the description, and the
negative button text, we can use 'Promptinfo’ class. Also, it is necessary to call
‘onAuthenticationError' method for handling errors that occur during the authentication
process, which is a useful process, especially for displaying the error message to the user. For
checking the success or failure of authentication, the ‘onAuthenticationSuccess’ and
"onAuthenticationFailed' methods are called to handle the two situations. Finally, If the
fingerprint matches, the app will directly switch to the main activity, as explained clearly in

Figure 15.

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

o4

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

launch login activity I

‘exist hardware
for biometric

show authentication window]

launch main
activity

FIGURE 15: A flowchart describes the process of login using the fingerprint technique

biometric
hardware
available

yes

authentication
success

fingerprint
assigned

y
notify the user

stay on login activity

5.5 Main Activity Processes: The main activity serves as the central component of our app,
responsible for implementing the majority of its functions. The workflow within this activity
starts by retrieving any stored passwords, if available, and preparing the RecyclerView to
display them. To accomplish these tasks, it is crucial to establish an efficient storage

mechanism for managing user passwords.

5.5.1 Passwords Storing Mechanism: To efficiently save data, the database concept is
widely recognized, and in the context of Android OS, the SQLite database offers an ideal
solution for managing repeated or structured data [13]. In our case, utilizing an SQL.ite
database to store password information is highly suitable. Android treats the SQL.ite database
as files stored in the device's internal storage. The necessary APIs for creating such a database
can be found in the android.database.sglite package. To construct the database, we can extend
the SQLiteOpenHelper class and implement its methods. As stated in the user requirements
(in Sec.2.1), each stored password consists of a name and a value. Therefore, a single table
with two columns is sufficient for our needs, as depicted in Figure 16.

Once the implementation of the SQL.ite database is completed, the next step is to create an
instance, either readable or writable, in the main activity. This instance will be responsible for
building the database in a background thread to prevent any long-running operations. With
the database successfully created, we gain the flexibility to perform various operations such

as reading, inserting, deleting, or updating the database from any part of our application code.

Password Name * TEXT
Password value TEXT

FIGURE 16. — SQL.ite database schema for password storage

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

e —
55

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

—
5.5.2 Storing New Passwords: When the user clicks on the °+’ button as illustrated in

Figure 7, the main activity should launch the corresponding dialog to enable the user to add
new passwords as shown in Figure 8. Adhering to the technical requirements outlined in
Section 2.2, the following procedures are performed in the background to facilitate the
addition of new passwords:

1. Get and Confirm: First, get the entered name and check if other stored passwords have
the same name by searching the database, then notify the user. Second, get the two
entered passwords’ values; and verify their identically, where this process is critical in
case of users’ mistype. If identical is approved, one of the values will be adopted.

2. Displaying: Add the new passwords to the RecyclerView.

3. Encrypting: For encrypting new passwords, we intend to use AES in CBC mode with
256-bit keys to provide a higher level of security and robustness against attacks. Using
AES in CBC mode with a 256-bit key will ensure the data’s confidentiality and integrity,
making it suitable for applications requiring high-security levels [14]. The CBC mode
has been modified to enhance the security of encrypted data by protecting against bit-
flipping attacks and adding an integrity approach using the keyed-hash function [15]
[16]. Also, using a 256-bit key in AES further strengthens the security of the encryption,
making it more resistant to brute-force attacks and Grover's quantum search algorithm
[14]. To meet technical requirements (in Sec. 2.2), the digest of the login password will
be used for encrypting with this algorithm as a key, noting that the algorithm and the
digest have the same length.

4. Storing: Store generated bytes from the encrypted password value with its
corresponding name in the SQL.ite database, then dismiss the dialog (shown in Figure
8). Moreover, executing the encryption and storing processes in a separate thread would
avoid hanging the Ul thread. The sequence of the entire process is shown clearly in

Figure 17.

[launch Add_New_Password Dialog]

v

/ get password name and values /

add the new password to the recycler view

check name
if not exist &
password values are,
identical

notify user from the shared preference

refrieve Iugln password digest]

mode with 256 bit keys

[encwpt password value using AES in CBC

| dismiss dialog Ir‘

FIGURE 17: A flowchart describes the Storing-New-Passwords process

store generated bytes from with password
name in the SQLite database

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

e

56

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.
e —
5.5.3 Displaying stored passwords: Upon launching the main activity, a checking process

is initiated to verify the presence of any stored passwords within the SQL.ite database. If
passwords are found, they are retrieved as a List containing password information such as
names and values. Subsequently, the password values in the list are decrypted using a
reversed encryption approach. Finally, the resulting list is utilized to populate the
RecyclerView, ensuring the display of the stored passwords. The sequential workflow for

this process is depicted in Figure 18.

check if stored

launch Main Activity nasswords exist

[get all stored passwords from database]

Y

[decrypt passwords values using AES 256 with Login-password digest as a key
+ F

[refrieve a List with passwords info (names, values)]

)
[feed the recycler view with the resulting List]

FIGURE 18A: flowchart depicts the execution process of displaying stored passwords.

Let us recall that each stored password will be accompanied by three buttons (icons) - delete,
edit, and copy - as depicted in Figure 6. The implementation of those procedures should be
incorporated within the RecyclerView adapter class, specifically in the onBindViewHolder
method, as outlined below:

- Delete password: Remove the selected password from the database after receiving user
confirmation, and then update the RecyclerView to reflect the changes.

- Edit password: Launch the Edit-Selected-Password Dialog (as depicted in Figure 10) to
obtain new values from the user. Encrypt the password value and store it, along with its
name, in the SQL.ite database. Finally, update the information of the respective password,
as illustrated in Figure 19.

- Copy password: Copy the value of the selected password to the clipboard.

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

o7

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

[iaunch Edit—SeIected-Password]

Dialog
{ R
encrypt new password value
getthe values —»| using AES 256 with the login-
password digest as a key
\ r,
f “\
store the new password info
check if changes yes (name, encrypted value) in the
were made on password \ SQLite database
info (name, value)
g n Y
update password info in the
recycler view
\ r,

| miss daiog |

FIGURE 19: A flowchart outlining the Edit-Stored-Passwords process

5.5.4 Search for Passwords: To enable users to search for a stored password within the
application, we have incorporated a SearchView widget. The SearchView located at the
bottom of the main activity layout as depicted in Figure 7, allows users to enter a password
name and view suggestions or results. When the user enters a password name in the search
view, the RecyclerView is filtered based on the input text to display matching passwords,

ensuring relevant results are displayed.

5.5.5 Setting Menu Items: As depicted in Figure 5, the setting menu consists of three
items: "Change login password," "Reset," and "Exit." When the user selects any of these
items, the corresponding functionality is executed in the background of the Main Activity.
The implementation logic for each setting menu item is as follows:

e Change login password: To change the login password, the associated dialog (as shown
in Figure 10) is displayed. The user must enter the valid old password along with the
new password values, ensuring that the new password fields match and meet the
required length conditions. The next step involves generating a new SHA256 digest
from the new password value and replacing the old stored digest (in shared preference)
with the new one. However, the process doesn't end here. After changing the login
password and relaunching the application, the Main Activity (as shown in Figure 18)
attempts to decrypt all password values (in the SQL.ite database) using the old digest as

a key, resulting in incorrect plaintext. Therefore, it becomes necessary to retrieve and

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

58

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

re-encrypt all stored passwords with the

new digest using the same AES 256 encryption

approach, as described in detail in Figure 20.

Reset: Resetting the app involves droppi

ng the passwords table in the SQL.ite database,

removing the stored login-password digest from shared preference, and returning the

application to the Launch Activity, as demonstrated in Figure 21.

Exit: This task entails finishing all activities and exiting the application.

[launch Change_Login_Password Dialog]

A
[get old and new values]

verify old password &
new password length >= 8 &
confirm new password

generate SHA256 digest from
the new password value

replace stored digest in the
shared preference with the new one

[]

nofify user

[dismiss dialog HR

e-encrypt all user passwords stored
using the new digest

FIGURE 20: A Flowchart illustrating

the Change-Login-Password process

launch alert dialog to
confirm Reset

[]

Reset confirm

4 B

drop password table in
the database

v

[remove login password)
digest from
| the shared preferance |

v

. »

™ ™

go to launch-Activity

. o

FIGURE 21: A flowchart describes how the reset process will be executed

6. TEST THE APP:

After generating the APK file, the app size was 3.91 MB. When testing the app on Android

devices running with API levels 26 to 32, all

the required functions worked correctly. The

testing began with the first launch, where a login password needed to be assigned. Assuming

the login password value was set to '12345678",

SharedPreferences after encoding

its bytes with Base64,

the generated digest was stored directly in the

resulting in the value

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

59

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

—

"7318gRjwLftklgfdXT+MdiIMEjJWGPVMsyVxel6iYpk8=". Also, The user can login using his
fingerprint if it was assigned to the device, where this feature works perfectly on devices with
Android 7.1 (Nougatl) and above.

During the testing of adding a new password, the password value was encrypted correctly
using the stored digest as a key for the AES algorithm. For example, if a new password with
the value 'pass1234' was added, the encrypted value to be stored after encoding its bytes with
Base64 would be '6mOedekTY3MSbe+20VhdaQ==". When relaunching the app, the login
procedure had to be followed by entering the correct login password. The app was then able to
decrypt and display all the stored passwords in the SQL.ite database correctly.

In the testing phase, the login password was changed to ‘computer’. The old digest was
replaced directly with the new one, resulting in the value
'qpcwlVD86BFCXNhFNWKKWwVjfi8TYqlFpR1Gfhev3Jw=" The value of the previously
added password "pass1234" was re-encrypted using the newly generated digest, resulting in the
value 'JTFOUOE7BE/MIRpQt20D/Q==". However, when attempting to run the application on
older devices with API level 25 or lower, it failed to launch due to the minSdk version used

during development.

7. CONCLUSIONS:

As individuals, we often encounter difficulties in managing and remembering multiple
passwords. The more passwords we have, the greater the risk of forgetting them and losing
access to our accounts, which is a common scenario. To address this challenge, some people
resort to traditional methods such as writing passwords on paper or storing them in cloud
services like Google Drive. However, these approaches are flawed and can easily lead to

unauthorized access by attackers or malicious individuals.

Instead of relying on traditional methods, developing an Android application specifically
designed for users with Android OS devices can provide a convenient and portable solution.
However, implementing such an application requires careful consideration of security aspects
and usability. To ensure secure access, a login process must be enforced, requiring users to

verify their identity with a password.

Storing passwords in their raw form within the device is not advisable as it poses the same
risks as traditional methods. The passwords' values would be easily accessible in the database,

making them vulnerable to inspection or cracking attempts. Therefore, it is crucial to store

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

60

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.

—

passwords securely, and encryption is a reliable solution. Similarly, the login password should

not be stored in plaintext. Hashing is an appropriate approach to make the login password

unreadable.

Using the SHA256 algorithm for hashing the login password and AES for encrypting the

user's stored passwords is recommended to increase the security level. Utilizing the generated

digest from the login password as a key for AES encryption further strengthens the overall

encryption process. By adopting these measures, users can benefit from a more secure and

robust password management solution.

FUNDING: None
ACKNOWLEDGEMENT: None
CONFLICTS OF INTEREST: The author declares no conflict of interest.

AVAILABILITY OF PROJECT AND CODES

Our application project ’Bank of Passwords’ is available on GitHub and can be accessed via:
https://github.com/Hussein-abd-alkhaleq/Bank-of-Passwords
DOl of the project: 10.5281/zenodo.8017281

8. REFERENCES

[1]

[3]

Gaw S, Felten EW. Password Management Strategies for Online Accounts. Proceedings
of the Second Symposium on Usable Privacy and Security. 2006;44-55.
https://doi.org/10.1145/1143120.1143127.

Floréncio D, Herley C, van Oorschot PC. Password Portfolios and the Finite-Effort User:
Sustainably Managing Large Numbers of Accounts. In: 23rd USENIX Security
Symposium (USENIX Security 14). Aug. 2014;575-590. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/florencio.

Mobile Operating System Market Share Worldwide. Statcounter GlobalStats, Sep. 03,
2023. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide
[Accessed: Sep. 03, 2023].

Kujala S, Kauppinen M, Rekola S. Bridging the gap between user needs and user
requirements. In: Advances in Human-Computer Interaction | (Proceedings of the
Panhellenic Conference with International Participation in Human-Computer Interaction
PC-HCI 2001). Typorama Publications, 2001;45-50.

Wihidayat ES. Pengembangan Aplikasi Android Menggunakan Integrated Development
Environment (Ide) App Inventor-2. 2017.

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

61

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq
https://github.com/Hussein-abd-alkhaleq/Bank-of-Passwords
https://doi.org/10.1145/1143120.1143127
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/florencio
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/florencio
https://gs.statcounter.com/os-market-share/mobile/worldwide

Saleh HA./ Al-Kitab Journal for Pure Sciences (2024); 8(1):40-62.
e
[6] New Android App Bundle and target API level requirements in 2021. Android
Developers, Nov. 19, 2020. Available: https://android-
developers.googleblog.com/2020/11/new-android-app-bundle-and-target-api.html
[Accessed: Sep. 04, 2023].

[7] Putranto BP, Saptoto R, Jakaria OC, Andriyani W. A Comparative Study of Java and
Kotlin for Android Mobile Application Development. 2020 3rd International Seminar on
Research of Information Technology and Intelligent Systems (ISRITI). 2020;383-388.

[8] Bose S, Mukherjee M, Kundu A, Banerjee M. A comparative study: java vs kotlin
programming in Android application development. Int J Adv Res Comput Sci.
2018;9(3):41-45.

[9] Gargenta M. Main building blocks. In: Learning Android. Sebastopol, California,
O’Reilly Media, Inc., 2011;28-29.

[10]lamnitchi A, Ripeanu M, Santos-Neto E, Foster IT. The Small World of File Sharing.
IEEE Transactions on Parallel and Distributed Systems. 2011;22:1120-1134.

[11]Rachmawati D, Tarigan J, Ginting A. A comparative study of Message Digest 5 (MD5)
and SHA256 algorithm. Journal of Physics: Conference Series. 2018;978:012116.

[12] Ebanesar T, Suganthi G. Improving Login Process by Salted Hashing Password Using
SHA-256 Algorithm in Web Applications. International Journal of Computer Sciences
and Engineering. 2019.

[13]Liu H, Yang L, Wu H. Design of Embedded Data Acquisition and Management System
Based on SQLite Database. 2022 11th International Conference of Information and
Communication Technology (ICTech). 2022;335-338.

[14]Alslman Y'S, Ahmad A, AbuHour Y. Enhanced and authenticated cipher block chaining
mode. Bulletin of Electrical Engineering and Informatics. 2023.

[15]Wade S. Description of Image Encryption Using AES-256 bits. International Journal for
Research in Applied Science and Engineering Technology. 2023.

[16] Nugrahantoro A, Fadlil A, Riadi I. Optimasi Keamanan Informasi Menggunakan
Algoritma Advanced Encryption Standard (AES) Mode Chiper Block Chaining (CBC).
Jurnal llmiah FIFO. 2020.

[17]EIMouatez B, Karbab M, Mourad D, Debbabi A, Abdelouahid Derhab D, Djedjiga
Mouheb. Fingerprinting Android Malware Packages. 2021. doi: 10.1007/978-3-030-
74664-3_3.

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

62

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq
https://android-developers.googleblog.com/2020/11/new-android-app-bundle-and-target-api.html
https://android-developers.googleblog.com/2020/11/new-android-app-bundle-and-target-api.html

