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Abstract:  

This article introduces a unique case study involving open curves of parabolic form situated 

within two-dimensional spaces. It presents a new form of a two-dimensional curve achieved by 

repositioning the focal point to coincide with the vertex position, resulting in what is termed a 

Semi-Parabolic Curve (SPC) where the focal point acts as the vertex referred to as the SPC head 

point. In essence, the SPC represents the path traced by a point on a plane, where its distance 

from a fixed point (the focus), is always greater than or equal to its distance from a fixed straight 

line (the directrix). Furthermore, the article provides the coordinate equations that govern the 

points along these curves. With the potential to pave the way for exploring additional geometric 

aspects relevant to this class of curves, and to enabling comparative analyses across diverse 

mathematical and geometric domains, particularly in three-dimensional contexts in the future. 
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 :الخلاصة

يدرس هذا البحث حالة جديدة تضم منحنيات مفتوحة في فضاء ثنائي الأبعاد ويقدم شكلًا جديداا من المنحنيات ثنائية الأبعاد 

بالمنحنى شبه   إلى ما يعُرف  الرأس مما يؤدي  لتتزامن مع موضع  التركيز  المكافئ متحققا من إعادة توضيب نقطة  القطع 

(SPC  حيث تعمل نقطة التركيز عمل الرأس ويشُار إليها باسم نقطة الرأس. وتأسيسا، يمثل )SPC   المسار الذي ترسمه نقطة

ا أكبر من أو تساوي مسافتها عن خط مستقيم ثابت )المستقيم   على مستوى، حيث تكون مسافتها عن نقطة ثابتة )البؤرة( دائما

 الموجه(.

علًوة على ذلك، فقد قدم البحث المعادلات الإحداثية التي تحكم النقاط على هذا النوع من المنحنيات ووفر القدرة لتمهيد 

الطريق لاستكشاف جوانب هندسية إضافية ذات صلة بهذا النوع من المنحنيات بما يؤمن مستقبلً إجراء تحليلًت مقارنة عبر 

ا في سياقات ثلًثية الأبعاد في المستقبل.مجموعات متنوعة من المجالات الرياضي  ة والهندسية، خصوصا

   .دوائر، منحني القطع المكافئ، خطوط قاطعة، قطع مكافئ، رأس القطعة :المفتاحيةالكلمات 

1. Introduction: 

The parabola stands out as one of the easiest conic sections to understand, alongside the 

circle. Initially, Menaechmus used it to replicate the volume of a cube [1-5]. Apollonius, in 

naming and unraveling numerous crucial attributes, made significant contributions to its 

study. The parabola earned mentions in the works of Archimedes concerning the calculation 

of areas under parabolic arcs, found its place in Euclid's writings, and was subjected to 

scrutiny by Pappus, who delved into the concepts of focus and directrix. Galileo's 

investigations revealed that projectiles trace graceful parabolic paths through the air [2].  

The phenomenon of reflection by parabolic surfaces was analyzed by notable figures such 

as Gregory and Newton. In modern times, these ideas are employed successfully to find 

applications in diverse fields, from automotive headlight design to solar cookers, telescopes, 

astronomical radio dishes, the trajectories of comets, architectural design, and whenever a 

relationship between two variables involves one being proportional to the square of the other  

[3]. A parabola is the set of all points in a plane that are equidistant from a fixed line (directrix) 

and a fixed point (focus) not on the line. The midpoint between the focus and the directrix is 

called the vertex, and the line passing through the focus and the vertex is called the axis of the 

parabola. It has a single focus and a directrix, which is a fixed line perpendicular to the axis 

of symmetry. The distance from any point on the parabola to the focus is equal to its distance 

to the directrix.  Historically, conics have a long history that started with Menaechmus (ca 

380- 320 BCE), continued with Euclid and Archimedes, and reached its peak with Apollonius 

[3-4]. Born about 380 BC in Alopeconnesus, Menaechmus called a parabola a section of a 

right-angled cone, and hyperbola a section of an obtuse-angle cone [4-5]. In mathematics, a 

parabola is indicated as a plane curve which is mirror-symmetrical and is approximately U 
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shaped. On the other hand, classical geometry indeed regards the parabola as a fundamental 

element within the realm of Euclidean geometry, typically within the framework of real 

numbers. Numerous treatises and mathematical works have been dedicated to exploring and 

establishing various properties of the parabola within this mathematical context. Euler made 

contributions to the study of parabolas and their equations, providing insights into their 

geometric and algebraic properties [6-7]. Laplace made advancements in applying algebraic 

methods to the study of conic sections, including parabolas [8-9]. They have significantly 

contributed to our understanding of this geometric shape and its properties over the real 

number field, making the parabola a fundamental concept in Euclidean geometry. In general, 

there are many methods in which the parabola features are constructed. For example, 

Eccentricity method, rectangular method, Parallelogram method, Tangent method and Offset 

method [10]. These methods are explained through various examples for drawing a parabola 

[11]. Nevertheless, geometric constructing methods of parabola are very interesting when 

using the concentric circles. In parabola, the vertex point, i.e. the parabola head point, is 

equidistant from a point, the focus, and a line, the directrix. There are several geometric 

construction methods for drawing a parabola. But here are two commonly used methods: 

Focus-Directrix Method [11-12], and Vertex-Focus Method [11-13], as geometric 

construction methods, provide a visual representation of the parabolic curve based on the 

properties of the focus, directrix, and vertex. By following these steps and constructing 

multiple points, a parabola can be accurately drawn. Focus-Directrix Method [14] is based on 

the fundamental definition of a parabola, which states that a parabola is the locus of points 

equidistant from a fixed point (focus) and a fixed line (directrix)   . While Vertex-Focus Method 

focuses on constructing the parabola using the vertex and the focus of the parabola. In Focus-

Directrix Method [14-15], the construction process involves drawing the directrix 

perpendicular to the given line and finding points on the parabola equidistant from the focus 

and the directrix, whereas Vertex-Focus Method [16] as this method begins with marking the 

vertex and the focus, followed by constructing points on the parabola equidistant from the 

vertex and the line connecting the vertex and the midpoint between the focus and the vertex 

[17-18]. In general, both methods yield accurate representations of the parabola and are widely 

used in different contexts. The choice between the methods depends on the given information, 

preferences, and the specific requirements of the problem at hand [19-20]. 

 In this part of the article, a new form of two-dimensional curve is produced by shifting the 

focus point along the equilibrium axis to be located at the vertex position which means a Semi 

Parabolic Curve (SPC) whose focus is the vertex point (the SPC’s head point). An SPC is the 
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locus of a point which moves in a plane such that its distance from a fixed point, called the 

focus, is greater than or equal to the distance from a fixed straight line, called the directrix. 

An SPC’s axis is a straight line passes through the focus and perpendicular to the directrix is 

called the axis of PSC while the point of intersection of an SPC and its axis is called the vertex 

of the SPC.  

Furthermore, a geometric method in this paper simply flattened the picture and put the 

series of tangent circles in the same plane as the curve, where one of the segments is held 

constant. these techniques will be applied to the proposed model of SPC as a special form 

curve which has a geometric means; hence, its single point simultaneously lies at focus and 

vertex, and it extends in infinity at both directions of x and y-axis. This paper developed a 

geometric method and investigated the proportions of this new form of curve, SPC. To draw 

SPC, let a distance from (F) along the x-axis be a given constant (a), then let the y-axis pass 

perpendicularly on the symmetrical-axis from the point (F), the origin point (0,0). Let be given 

a point (F) sets as a vertex point (the PSC head point) at a given constant (AF) on the 

symmetrical-axis, then on the y-axis construct a line segment (AA1) with angle (u). Then 

draw a perpendicular on (AA1) intersects the x-axis at point (B1), the midpoint of line segment 

(AA1) is point B, which is a point of SPC. These segments are then plotted against the series 

of geometric means A1, A2, A3, to give a set of the points of B1, B2, B3, all of which lie 

along y-axis and x-axis respectively. This new curve is named as the SPC.  

The vertex is the point of the focus which is the point of intersection of axis and directrix. 

Besides, if B be a point on the SPC and Bn and BF are the distance from the directrix and 

focus F point respectively, then the ratio (BF / BA) is called the eccentricity of the SPC, which 

is denoted by (e). By the parabola definition, the SPC ratio of e is; (e ≥ a), Figure 1. 

    

 

 
Figure 1. plot the SPC by a set of points in the plane that are equidistant from a SPC’s point of B (the midpoint of line 

segment A1B1) which is a perpendicular on a line segment (DA1) drawn from D with angle (u). 
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1. SPC’s CONSTRUCTION METHODS  
 

A set of geometric methods are produced in this paper to determine points and then to draw 

the SPC. These three methods are listed as follows: 

2.1 Tangents and Circles Centers Method (TCCM): 

The TCCM is built according to the proportion of the SPC. The particular principle of 

TCCM is depending on letting a given distance from the point (A), and the Focus point (the 

vertex) which is a constant of the SPC, determining the directrix of the SPC on the symmetrical-

axis. In addition, the TCCM is applied to the construction of SPC by changing the meanings of 

tangents and perpendiculars at both side of y and x-axis, then the midpoints of obtained points 

help to construct the SPC points.  The following procedures are presenting the TCCM: 

• Let a horizontal distance from (A) to (F) along the x-axis be a given constant, (a), then let 

the y-axis be the symmetrical-axis from the origin point (F). 

• Let be given a point (F) sets as a vertex point, the PSC head point, at a given constant 

(AF=a) on the symmetrical-axis.  

• By angle (u), construct line segments from point (D) at a distance of (2a), these line 

segments intersect the y-axis at points (An). 

• Then draw a perpendicular on (AnD) from point (An), which intersect the x-axis at point 

(Bn). 

By drawing a perpendicular on (AnD) from point (An), a line segment (AnEn) is intersecting 

the y-axis at (An) and the x-axis at (En). From the midpoint of (AnBn), draw a circle that passes 

through intersection points; (An), and (En).  As a result, the midpoint (B) is a center of the 

drawing circle, and also it is a point of SPC. Also, the generation method of TCCM benefits to 

determine as many as possible of points of SPC, and with a help from the French curves the 

pure curve is precisely drawn, as it is illustrated in Figure 2.    
 

 

Figure 2.- plot the SPC according to TCSM, where the distance (AF=a) is a constant. 
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TCCM's theorem (1): This theorem states that the SPC’s point is the midpoint of the line 

segment which is drawn from the intersection points with the y-axis and the x-axis, if the line 

segment is a perpendicular at the y-axis with the line which is drawn from the directrix point 

on the symmetrical-axis. TCCM generation method ia applied to the construction of SPC by 

the first theorem. To determine the position of a point on the SPC, let (AF) be a given distance 

where (F) is the origin point. Construct a segment line from (D) to intersect the y-axis at a point 

(let it be A1), then from (A1) draw a perpendicular on (AA1) which is extended passing through 

x-axis at (B1). Point (B) is the midpoint of the segment (A1B1), which is a point of the SPC, 

Figure 2. 

Proof: To proof this theorem, let the segment line (DF) be a given distance on the symmetrical-

axis where (F) is the SPC focus which is located on the origin point. Construct a segment line 

from (D) to intersect the y-axis at point (let it be An), then from (An) draw a perpendicular on 

(DAn) which is the secant passing through coordinate x-axis at (Bn), then let the point (B) be the 

midpoint of this segment (AnBn). the triangle (AnFBn) is a right-angled triangle. Thus, the circle 

drawn from the midpoint of the segment (AnBn) is passing through three points (F), (An), and 

(Bn); this means (AnB = BBn). Hence, points in the plane that are equidistant from a point B, the 

midpoint of line segment AnBn, is a perpendicular on line (DAn) with angle (u). And then, 

according to the SPC definition, Figure 1, the point of the SPC is the midpoint of the segment 

(AnBn), Figure 3. Hence, points in the plane that are equidistant from a point B, the midpoint of 

line segment AnBn, is a perpendicular on line (DAn) with angle (u). And then, according to the 

SPC definition, Figure 1, the point of the SPC is the midpoint of the segment (AnBn), Figure 3.   

 

Figure 3.- The plot of the SPC according to TCCM's theorem (1), where; (F) is the focus- vertex point.  

It is noticeable that the SPC has a single drawing circle whose center point is the vertex point of the SPC. Therefore, any shared 

point at the SPC and the parabola segment passes through a single point which is the SPC’s vertex and the parabola focus, (F).  
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TCCM's theorem (2): states that at any segment whose midpoint is a point of SPC, the line 

length from the focus to the SPC point or that from the SPC point to either the top or end point 

of the segment is a constant.   

Proof: To proof this theorem, let (AF) be a given distance where (F) is the SPC focus located 

on the origin point (0,0). Then let (DF) be a segment line of (2a) located on x-axis. From 

theorem 1, the SPC’ drawing circle whose diameter is the segment (AnBn), thus the drawing 

circle passes throught 3 points: (F), (An) and (Bn). Then, from drawing a circle defination, the 

diameter (AnBn) is divided into two equal parts: (AnB = BBn), then from these three points, the 

∆(AnBnF) is a right angled triangle at the focus- vertex point (F) , Figure 4.       

Accordingly, the segments;  

(A1F) ∟ (FBn),  

then from the drawing circle defination; 

(A1B = BF = BB1), 

   
 

Figure 4.- plot the SPC according to TCCM's theorem (2), where; (F) is the focus- vertex point and 

Segments (A1B= BF= BB1) . 

TCCM's theorem (3): states that for any SPC, all secants are intersected at a single point lies 

on the x-axis at a distance of (2a),  from the focus- vertex point. 

Proof:  To proof this theorem, let (AF) be a given distance where (F) is the SPC focus located 

on the origin point (0,0). Then let (DF) be a segment line of (2a) located on x-axis. From 

theorems 1 and 2, the right-angled triangles (DFAn) are adjacent triangles shared angle (AnFD) 

and they are said to be adjacent to each other along a common side (DF), which is the horizontal 

distance from the focus- vertex point; thus, DF=2a, , Figure 3. 

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq


Al-Ossmi LH./ Al-Kitab Journal for Pure Sciences (2024); 8(1):104-124.

 

 
Web Site: https://isnra.net/index.php/kjps   E. mail: kjps@uoalkitab.edu.iq

 
111 

It is noticeable from theorem (3) that the SPC is extended into the infinity along the 

symmetrical-axis where (F) is the SPC focus located on the origin point (0,0). However, it is a 

succinct way to say that the length of SPC segment is varied according to constance value of 

(a), the horizontal distance from the focus- vertex point (F) and (DF).  Furthermore, any point 

of SPC is a center of a single circle which is passing through the focus point.  Biulding on the 

theorem one, all circles whose center point is a point of SPC are passing through 3 points (F), 

(A1) and (B1), where (B) is the center point and a point of the SPC.  

TCCM's theorem (4): states that from any drawing circle, (whose center is a point of SPC), 

the horizontal line from its center point parallel to the x-axis and intersects the tangent of the 

drawing circle at a midpoint which from it the perpendicular is drawn from the focus on the 

line segment that is constructing the focus and the center point of the drawing circle.     

Proof: To proof this theorem, let (B) be a point on SPC, and the drawing circle of SPC whose 

center point is (B) intersects the y and x-axis at (An) and (En) respectively. From point (B) 

construct a line segment parallel to x-axis and perpendicular on (DAn), hence line segment (BNn) 

intersects (DAn) at a point (Nn) which lies on the directrix. Then, from SPC definition, (DA = 

AF=a). From the right-angled triangles (DFAn), line segments (NnA) parallel to y-axis, and 

divides (DF); then,  

  (DA= AF = NnA = a), thus; (DNn = NnAn),  

This theorem indicates that the triangle whose sides are (NnB), (BF), and (FNn) is a right 

angled- triangle, hence the line segment (NnF) is perpendicular on (FB), Figure 5. Similarly, it 

indicates that the line segment constructed from any point on SPC and the focus is perpendicular 

on that line segment constructed from the horizontal line from the SPC focus- vertex point, 

which intersects the directrix, hence; angle (BFNn = 90º). 

 
Figure 5.a. - plot the SPC according to TCCM's theorem (4), where; 
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  (DN1 =  N1A1)  and; (DN2  =  N2A2),  
  

 

Figure 5.b. - plot the SPC according to TCCM's theorem (4), where; 
  (DN1 =  N1A1)  and; (DN2  =  N2A2),  

  

TCCM's theorem (5): states that the tangent of latus rectum point of SPC is a perpendicular 

on the line segment drawn from the center point of the drawing circle, whose center is a point 

of SPC, passing through the x-axis at a point that made by the vertical tangent of this circle.    
 

Proof: To proof this theorem, let (B) be a point on SPC, which is the center point of the drawing 

circle of SPC and its circumference intersects the y and x-axis at (An) and (En) respectively. 

From point (B) and (En) draw vertical segment intersect SPC at point (T) and (Tn), which are 

SPC latus rectum. Then, link between (A) and (T), and between (D) and (Tn) , Figure 6.   
    

 

Figure 6. - plot the SPC according to TCCM's theorem (5), latus rectum 
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Where segments; AT and TnD are tangents on the SPC from points; T and Tn respectivelly. 

 

TCCM's theorem (6): states that eccentricity of SPC is e ≥a :  

Proof: To proof this theorem, let (Bn) be a point on SPC, and A and F are the distance from the 

SPC directrix and focus respectively. From the previous theorem (5), the three points (Nn), (Bn) 

and (F) made up a right angled- triangle ∆(NnFBn), where angle u = . Note that when 

(FBn=0), formerly (e= a). Besides, the line segment (FBn) is the radius of the drawing circle of 

SPC, then the ratio: 

e= (r/ NnBn), see Figure 7. 

Then, the ratio e= (BF/ NnBn)  is called the eccentricity of the SPC, which is denoted by e. 

By the definition for the SPC, e ≥ a. 

 
 

 

Figure 7. -  Eccentricity of the SPC, 𝒆 ≥ 𝒂 

Regarding the parabola segment whose focus is the vertex of SPC, eccentricity of the 

parabola is (e =1) which is less than that of SPC. From the origin point (0,0), there is only one 

tangent which touch SPC from the latus rectum at point (±2a, ±a), and its length can be 

determined by the following formula: √3𝑎2 , since the SPC drawing circle, whose center is the 

tangent point (B) has a radius of (√𝑎  ), which lies at (±2a, ±a), whereas the origin circle of SPC 
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whose center point is (A), it has radius of (a) and it tangent the vertex-focus point of the SPC, 

Figure 7. 

 

 

Figure 8. -  plot tangents related to SPC latus rectum’ point. 

Figure 8 illustrates that from the intersection point of the directrix and the x-axis, point (A), is 

only one tangent to the SPC from the latus rectum’ point (B). Hence, the SPC tangent point lies 

at (±a ,± 2a), since the SPC tangent from the latus rectum’ point has a constant slop with a 

precisely value of (u = 26.56512º), where: 

A1B=BA2 = √𝑎 ,                                          (1) 

A1B1= 3√𝑎 ,                                          (2) 

2.2 Tangent Circles & Secant Midpoints (TCSM) construction method:  

The TCSM method is built according to the proportion of the SPC. The particular principle 

of TCSM method is depending on letting a given distance from the point (A), and the Focus 

point (the vertex) is a constant of the SPC, determining the directrix of the SPC and the vertex 

point (B) set on the symmetrical-axis. In addition, the TCSM method is applied to the 

construction of SPC by changing the meanings of tangent circles on the midpoint of their 
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secants.  In this paper, given the focus (F) and the directrix at a constant distance of (a) from 

point (A), and letting (F) be the origin point of y and x-axis, the TCSM method can construct 

any number of points on the SPC. The following procedures are presenting the TCSM:  
 

• Let a horizontal distance from (A) to (F) along the x-axis be a given constant, (a), then 

let the y-axis be the symmetrical-axis from the origin point (F). 

• Let be given a point (F) sets as a PSC vertex point, the head point, at a given constant 

(DF= 2a) on the symmetrical-axis, and then from point (D) construct a set of tangent 

circles at the symmetrical axis starting by the first circle with radius (a), so that the next 

circles are drawn with increased radius gradually, each circle intersect the y-axis and x-

axis at points (A1) and (E1) respectively.  

• Construct secants from point (A1) at y-axis to link that point (E1) at the x-axis. 

• From the midpoint of secants (AnE1), the midpoint of the secant (B1) is a point of the 

SPC, Figure 9.   

In order to obtain the other points of the SPC across the symmetrical axis, repeat the previous 

steps at the symmetrical axis to determine these opposite points. Besides, the generation method 

of TCSM benefits to determine as many as possible points of SPC, and with the help from the 

French curves, the pure curve is precisely drawn, as it is illustrated in Figure 9.    
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Figure 9. - plot the SPC according to TCSM, where the SPC vertex- focus is (F), and (DF= 2a). 

It is perceptible that both methods, (TCSM) and (TCCM), can work together to produce SPC 

points; hence, drawing procedures of both methods are built on a set of circles. However, all 

points of SPC can be obtained without drawing circles since PSC points lie on the midpoints of 

secants, (in TCSM), or by a set of perpendiculars midpoints at these segments drawn from y-

axis and point (D), (in TCCM), Figure 10. Correspondingly, the SPC points can be determined 

according to two constants: the first constant is (a), and then the distance between (D) and (F), 

(2a). The second constant is angle (u) which determines all secants lengths and then its 

midpoints which are the SPC points. Additionally, value of (a) determine the case in which the 

SPC is a concave up curve or a concave down. 
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Figure 10. - plot the SPC by both TCSM & TCCM's theorems. 

 
 

3. Relationships between SPC and Parabola 

In general, SPC is a curve whose vertex lies at the focus point of a parabola segment. 

Furthermore, the parabola directrix lies at (2a); hence, the SPC’s vertex point is the parabola 

focus, (F). Similar to the parabola, the SPC has two orientations, concave up and concave down. 

The orientation of an SPC can be found from its equation.  

• The SPC is concave up if (a > 0)and concave down if (a < 0). 

• The y-intercept is where the SPC meets the y-axis.  

• The x-intercepts are where the SPC meets the x-axis.  

Also, there will be either; 

• two x-intercepts. 

• exactly one intercept. 

• no intercepts. 

A reflection of a geometric figure is a transformation that results in a mirror image of it. For 

example, the SPC is reflected across the x-axis. Each point (x, y) on the original SPC is reflected 

to (x, –y) on the reflected parabola. When the parabola directrix lies at (a) then the SPC’s vertex 

point is the parabola focus, (F). Also, when the parabola segment and the SPC share the same 

point of the vertex, then the midpoints of all these vertical perpendiculars from any points of 

parabola and the x-axis are SPC’ points. This means that the midpoint (Bn) of a vertical segment 

(PnDn) drawn from any point of parabola segment (Pn) to x-axis is a point of SPC, Figure 11.   
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Figure 11. - plot the SPC by a midpoint of perpendicular drawn from any point on parabola to the x-axis, where;  
 (PnBn  =  BnDn), if the parabola segment and SPC share the same point of the vertex. 

The SPC is a curve whose vertex lies at the focus point in 2-dimentional plane. In general, 

SPC key proportions are listed in Table 1.   

Table 1. - Key standard forms of the SPC. 

SPC’s Standard Equation. y=x tan (90 -u), where; (a > 0) 

 

Shape of SPC. 

    

Vertex point. A (0,0) A (0,0) A (0,0) A (0,0) 

Focus point. F (0,0) F (0,0) F (0,0) F (0,0) 

Equation of directrix. x= -a x= a  y= -a  y= a  

Equation of axis. y= 0  y= 0  x= 0  x= 0  

Length of latus rectum. 2a  2a  2a 2a  

Extremities of latus rectum. (a , ± a) (-a , ± a) (±a , ± a) (a , - a) 

Equation of latus rectum. x=a x=-a  y=a  y=-a  

Equation of tangents at 

vertex. 
x=0  x=0  y=0  y=0  

Focal distance of B(x,y) x+a  x-a  y+a  y-a  

Eccentricity (e). ≥a ≥a ≥a ≥a 

4. SPC’s Standard Equation  

By drawing the SPC according to the TCCM, let (a) be the distance of the directrix and the 

SPC’s vertex point (F) along the symmetry axis, where a ≠ 0, as it is illustrated in Figure 12. 

Then, from the right-angled triangles: (DA1F), (A1FE1), and (DA1E1):  

 (3)                                         ,1cos u = 2a / DA  

                      And defined by; 
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(4)                                         1,= 2a + FE 1DE 

Where;                                                         

  cos 𝑢 = (
(

2𝑎

  cos 𝑢  
)

 2𝑎+𝐹𝐸1 
),                                                 (5) 

  And we denoted this relation as; 

(6)                                         cos u= (2a/ cos u),1 2a cos u+ FE 

(7)                                         2a cos u, -cos u= (2a / cos u)  1FE 

(8)                                         u/(cos u), 22a cos -cos u= 2a  1FE 

(9)                          ),               u)/(cos u 2cos  -(1 a 2cos u=  1FE 

Then by equations 1 and 9 we find; 

),                                      (10)u 2) /(cosu 2cos -(1 a 2=  1FE 

hence SPC’ points (x,y) given as follows; 

 (11)                                         / 2,1 x= FE   

where; (a > 0), then; tan (90-u) = (y/x),  

Then, all points of SPC can be determined by the following formulae: 

𝑥 =  (
 1 

2
) (

 2𝑎 (1 −  𝑐𝑜𝑠2𝑢)  

𝑐𝑜𝑠2𝑢
) ,                                                       (12) 

𝒚 =  ((
 1 

2
) (

 2𝑎 (1 −  𝑐𝑜𝑠2𝑢)  

𝑐𝑜𝑠2𝑢
)) tan(90 − 𝑢) ,                                                      (13) 

The standard equation of SPC’s point (x,y) is given as follows:  

y= x tan (90 – u),                                         (14) 

x= y/ tan (90 – u),                                         (15) 
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Figure 12. - plot the SPC according to the TCCM to determine position of B(x,y). 

 

5. APPENDIX A: SPECIAL CASES OF SPC 
 

 
 

 

Figure 13: intersection two SPC, when AF= a, FB = BA2, & BA2 parallel and equal to D1D2 /2. 
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Figure 14: If all three points lie on the SPC, then we have SPC’s triangle. 

 

 

 

 
Figure 15 : when both parabola and SPC shared the drawing circle radius, (circle1= circle2).  
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Figure 16: when both parabola and SPC shared the drawing circle radius, (circle1= circle2).  

 
  

 

Figure 17 : when the SPC’ vertex = parabola’s focus 
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Figure 18: when the SPC’ vertex = parabola’s focus 

 

 

6. Conclusion  

This paper has dealt with a novel form of an open curve named SPC, whose focus point lies 

on its vertex. Two geometric construction methos, (TCSM) and (TCCM) are produced to 

determine the points of SPC. The SPC is a symmetric and open curve, and it extends into 

infinity alone its symmetrical axis. The SPC shared some geometric and algebraic proportions, 

but the key difference is that the SPC’s focus lies on its vertex point, a set of SPC key 

proportions are investigated and listed in Table 1. 

This article has shown that this new curve has a focus, in which all drawing circles whose 

center is located on the SPC are passing through the SPC focus and intersecting the x-axis and 

y-axis respectively. The distance along the symmetry line between the SPC focus and the 

directrix point is varied (a) in which the shape of SPC is concaved up (if a > 0) ,or concaved 
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down (if a < 0) while from any point at SPC, the drawing circle is intersecting the symmetrical 

axis at a constant of (2x).  Additionally, the radius of any drawing circle equals to 

correlated to any point of SPC. In general, there is a couple of key integers [a, u] (√𝑥
2

+ 𝑦
2

 ) , 

for generating and describing the SPC proportions.  

There are several known proofs that have not been introduced in this article, but even though 

a lot of proofs are known. There is no doubt that there are a lot of undiscovered proofs, and they 

are worth discussing, sharing and presenting. 

Future researches may deeply deal other proportions of this curve, and a list of these 

proportions are illustrated and listed in Appendix of special cases of SPC, for those interested 

in studying them and applying the result to a generalization of some geometrical theorems 

related to this form of curve.  
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