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Abstract: 

This paper examines a category of general nonlinear integral equations. These equations also 

include many special cases, such as functional equations and nonlinear integral equations of the 

Volterra type. In order to approximate the solutions to numerous physical, chemical, and 

biological issues, we implemented an approach that incorporates the fixed-point method and 

semi-vertical cubic scaling functions. We also obtain a numerical solution to the integral 

equation. Numerical examples illustrate the accuracy and validity of this method. 

Keywords: Fixed Point Method, Non-Linear Fredholm Integral Equation, Cubic B-Spline 

Wavelets, Scaling Functions, Darbo Condition. 
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 B الخطية باستخدام طريقة قياس الشريحةالحلول التقريبية للمعادلات التكاملية غير 

 المكعبة 

 محمد جبار عداي الشرع 

إيران  /الإسلاميةجامعة آزاد  /كلية العلوم /التحليل العددي /قسم الرياضيات  
Mohammedalshara1975@gmail.com 

 :الخلاصة

الحالات  من  العديد  أيضًا  المعادلات  هذه  تتضمن  العامة.  الخطية  غير  التكاملية  المعادلات  من  فئة  الورقة  هذه  تتناول 

للعديد من القضايا  الخاصة، مثل المعادلات الوظيفية والمعادلات التكاملية غير الخطية من نوع فولتيرا. من أجل تقريب الحلول  

نحن   ،الفيزيائية والكيميائية والبيولوجية، قمنا بتنفيذ نهج يتضمن طريقة النقطة الثابتة ودوال التحجيم التكعيبي شبه العمودية

 نحصل أيضًا على حل عددي للمعادلة التكاملية. توضح الأمثلة العددية دقة وصلاحية هذه الطريقة. 

طريقة النقطة الثابتة؛ معادلة فريدهولم التكاملية غير الخطية؛ الموجات المكعبة ذات شكل متعرج ؛    المفتاحية:الكلمات  

 . شرط داربو وظيفة القياس،
 

1. Introduction : 

An integral equation is an equation with an unknown function, x(s), under the integral sign 

[1-4]. The conventional form of this Equation in x(s) is as follows. 

𝑥(𝑡) = 𝑓(𝑡) + 𝜆 ∫ 𝑘(𝑡. 𝑠)𝑢(𝑠) ⅆ𝑠
𝑓(𝑡)

9(𝑡)
,                                                         (1) 

k(t,s) is a function that consists of two variables and is referred to as the kernel of the 

Equation, while λ is a constant parameter. The limits of integration are β(t) and g(t). The 

function x(s) appears, defined under the integral sign, as well as the interior and exterior of the 

sign. The functions f(t) and k(t,s) have been given previously, and the limits of integration g(t) 

and f(t) can be constants, variables, or a combination of a constant and a variable. Integral 

equations have multiple forms, and there are two ways to distinguish the Equation, which 

depend on the limits of integration.  

1- If the limits of integration are constant, the Equation is referred to as the Fredholm 

equation and is expressed in the following representation. 

                          𝑥(𝑡) = 𝑓(𝑡) + 𝜆 ∫ 𝑘(𝑡. 𝑠)𝑢(𝑠) ⅆ𝑠
𝑏

𝑎
                                                                (2) 

2- When one of the limits of integration is a constant, and the other is a variable, the equation 

is considered a Volterra equation and is expressed in the following manner. 

                         𝑥(𝑡) = 𝑓(𝑡) + 𝜆 ∫ 𝑘(𝑡. 𝑠)𝑢(𝑠) ⅆ𝑠
𝑥

𝑎
,                                                                 (3) 

Additionally, two varieties of equations are contingent upon the form of the function x(s), 

which is defined as follows: 
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1- The integral Equation is referred to as a Volterra or Fredholm equation of the first kind 

if the unknown function x(s) is present exclusively within the integral sign. 

2- A Volterra or Fredholm equation of the second kind is defined as an equation in which 

The unknown function u(s) is present both within and outside the integral sign. Suppose the 

Function f(s) equals zero in Volterra or Fredholm equations. The integral Equation is referred 

to as a homogeneous equation. The Fredholm integral equation of the second kind is called 

nonlinear if the function x(s) that appears under the integral sign is nonlinear. Additionally, it 

is expressed in the subsequent manner (ⅇ−𝑐𝑜𝑠2(
1

2
)
 . 𝑠𝑖𝑛 2(𝑥)…..), etc. Accordingly, the Equation 

has been formulated as follows. 

                          𝑥(𝑡) = 𝑓(𝑡) + 𝜆 ∫ 𝑘(𝑡. 𝑠)𝐹(𝑢(𝑠)) ⅆ𝑠
𝑓(𝑡)

9(𝑡)
,                                                      (4) 

We want to clarify in this introduction that Fredholm's integral equations can be derived 

from boundary value problems, and it is essential to remember Eric Fredholm's work on integral 

equations and the applied theory from the year (1866-1927). The Swedish scientist developed 

the theory of integral equations, and his research paper, presented in 1903 in the Acta 

Mathematica, played a fundamental role in establishing operator theory. Integral equations play 

a prominent role in applied mathematics, and non-linear integral equations have significant 

practical importance, as shown by numerous studies in the field of knowledge, encompassing 

biology, traffic theory, optimal control theory, economics, and other engineering sciences [5-

8]. Numerous sources have examined functional integral equations' existence and analytical 

behaviour [5, 9, 10] using non-compactness measure techniques and fixed-point theories. In 

references [10], scholars Jalilian and Aghanjani presented numerous results related to the 

existence and unified universal gravity and the local gravity of solutions to the functional 

integral Equation. 

x(t) = (Kx)(t) = f (t,x.(α(t)), ∫ u (t, s, x(γ(s))) ds
β(t)

0

) , t ∈ [0, ∞]                           (𝟓) 

These results were presented through the measure of non-compactness. These results were 

reached by the scientists Jalilian and Aghanjani, who worked to improve and expand upon the 

findings that emerged in other studies. Most functional integral equations are not amenable to 

analytical solutions; therefore, numerical methods are indispensable. Consequently, numerical 

methods are implemented to ascertain an Approximately calculated solution. The numerical 

solution of integral equations can be approached using projection, iterative, and Nystrom 

methods [11-12]; the references include the definitions of the collocation approaches [13, 14-

17]. Galerkin methods are used to find numerical solutions for Fredholm integral equations, as 

outlined in the references [ 13, 14, 17-21] Spline functions, wavelets, product integration, 
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homotopy analysis approaches, homotopy perturbation, Adomian decomposition method, 

interpolation of polynomials methods, suboptimal trajectories, and multigrid methods are all 

viable alternatives. The Nystrom procedures are mentioned in the references [11-14, 21, 22]. In 

a few articles, the approximate numerical representation of the solution has been analyzed. 

Composition techniques are the foundation of Numerical approaches to solving functional 

integral equations [23-30], homotopy perturbation methods [25,26-32], Lagrange and 

Chebyshev interpolation methods [27,28,32-38]. The various studies in most numerical 

methods addressed by previous research transform the integral Equation into a linear or non-

linear algebraic equation system. This paper presents a numerical solution for an integral 

equation utilizing a hybrid iterative approach that combines the fixed-point method with 

trapezoidal scaling functions. The method does not rely on any equation-solving system. The 

objective of employing this method for non-linear functional integral equations is to achieve a 

more precise solution with less error. We successfully attained favorable outcomes with this 

strategy and further elaborated on the findings presented in other investigations. The 

investigation is structured as follows: In the first section, the scholars Jalilian and Aghanjani 

provide an introduction to integral equations and a definition of equation number (5). The 

second section of the research provides the definitions necessary for effectively composing this 

scientific paper. In the third section, we examined several findings that pertain to having existed 

and the allure of the aforementioned integral Equation. In the fourth section, we introduced the 

development of cubic B-spline functions within the interval [0.1], as documented in sources 

[39-42]. In the fifth section, we provide an explanation of the strategy used in this research's 

solution method and the method by which we approach the genuine solution. Conversely, in the final 

section, we provided numerical examples to demonstrate the precision of this methodology and 

contrasted the accuracy of these numerical results with those from prior research. 

2. Background Concepts 

We provide some definitions and findings in this section relevant to the rest of the paper. 

BC(ℛ+) is a branch with limited space, but operations continue on ℛ+, furnished with a 

conventional standard. ||z|| = sup{|z(t)| : t ∈ℛ+, }.Let E Let be an infinite-dimensional Banach 

space containing the zero element. element θ and norm || · || Indicate the closed ball with 

radius r and center at x by writing B(z, r). Closure and convex property of Z, a nonempty 

subset of E, are shown by the symbols Z and Conv Z, respectively. Let also 𝑚𝐸 be all 

relatively compact combinations: their family and 𝑛𝐸  denote the family of all nonempty 

bounded subsets of E. We employ the concept found in [4] for the non-compactness metric. 
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Definition 1. When a mapping v: 𝑚𝐸 → ℛ+ meets specific requirements, it can indicate 

non-compactness in E. 

1. a family ker u = {X ∈ 𝑚𝐸 : u(x) = 0} is not-empty and ker x ⊂ 𝑛𝐸 . 

2. X⊂ Y ⇒ v(X) ≤ v(Y). 

3. u( Z) = u(Z). 

4. u(Conv x) = u(x). 

5. u(λX + (1 − λ)Y ) ≤ λu(x) + (1 − λ)u(Y ) for λ∈ [0, 1]. 

6. write an equation of closed originating from sets (Xn) from nE such that   𝑋𝑁+1 ⊂ Xn(n = 1, 

2, . . . ) and if 𝑙𝑖𝑚
𝑛→∞

𝑥(𝑋) = 0  consequently, the intersection emerged. 𝑋∞ = ⋂ 𝑋𝑛
∞

𝑛=1
 is 

nonempty. Given the Example of Banas and Goebel, we present a Darbo-type fixed-point 

theorem.[9] 

Theorem (1): I will define E as a closed, convex, limited, and not-empty subset of the 

Banach space divided into sub-sets C. 

 Let L: E → E a constant was present. Mapping presupposes that there is a consistent. Z.∈ [0, 

1) thus, u(F(X)) ≤ kw(X) before  every non-empty sub-group of C that. Subsequently, L contains 

a fix-point within the set  C. For any not empty bounding sub-set X of BC(ℝ+), x ∈ X, T >0 and 

∈ ≥ 0 let 

𝑤𝑇(𝑥, 𝜖) = sup{|𝑥(𝑠) −  𝑥(𝑠)|: t, s ∈ [0, T], |𝑡 − 𝑠| ≤∈} 

𝑤𝑇(𝑥, 𝜖) = sup{𝑢𝑇(𝑥, 𝜖): 𝑥 ∈ 𝑋}, 

𝑤0
𝑇(𝑥) = 𝑙𝑖𝑚

€→∞
𝑢0

𝑇(𝑥, €), 

𝑤0
𝑇(𝑥) = 𝑙𝑖𝑚

𝑇→∞
𝑢0

𝑇(𝑥), 

X(t) = x(t) : the variables x ∈ X}, 

diam the function X(t) = sup{|x(t) − y(t)| : x, y ∈ X 

And 

μ(X) = 𝑤0 (𝑥) + 𝑙𝑖𝑚
𝑇→∞

 sup diam the function X( t)                                                               (6) 

Banas has demonstrated in [43] that the function  μ measures non-compactness via space. 

BE(ℛ+). The solution to the equation as operative from the  BE(ℛ+) included in BE (ℛ+) 

                                                                      (F x)(t) = x(t)                                                                   (7) 

We will discuss the introduction: the attractiveness to Eq. (7). 

Definition 2: [9] If a ball B(𝑥0,, r) exists in space, then solutions to Eq. (7) are locally 

attractive. BC(ℝ+) so that for Any two solutions that are arbitrary to  Eq. (7) that are part of 

B(𝑥0, r) ∩ῼ that is in our possession. 
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                                                                 lim.
𝑡→∞

 (x(t) −  y(t)) =0                                                          (8) 

    Resolving the  Eq. (7) is locally alluring at a uniform rate (or, similarly, asymptotic stability) 

if the limit (4) is consistent concerning 𝐵(𝑥0,𝑟) ∩ 𝛺, 

Theorem 2: There is a minimum of one solution to  Eq. (5) in BC(ℛ+) for all of (5)'s solutions 

that have uniform local attraction. 

Proof: This section presents a summary of the proof necessary for the subsequent sections. 

Refer to [10] for additional information. 

First, the authors designed operator K in [2]; hence, for any  x ∈ BC(R+) 

(H𝑥)(𝑡) = 𝑓 (𝑡,𝑥.(𝛼(𝑡)), ∫ 𝑢 (𝑡, 𝑠, 𝑥(𝛾(𝑠))) ⅆ𝑠
𝛽(𝑡)

0

)  , 

(H𝒙) is clearly continuous on ℝ+.Next, for each arbitrarily fixed t ∈ ℝ+ 

|(Mx)(t)| ≤ n |x(α(t))| +𝑀0, 

Where                               𝑀0= sup{|f (t, 0, 0)| : t ∈ R+} + ᴪ(2D), 

𝑟 =
𝑀0

1 − 𝑛
. 

Subsequently, they demonstrated that given A set that is not vacant  X ⊂ (Br), μ(HX) < nμ(X), 

with n ∈ U(0,1). Accordingly, the Eq. (1) of functional integration is at least one solution in 

British Columbia. (𝓡+), and(x) has a fixed- -point in (Br) for the operator H.  based on Theorem 

1. Every solution to Eq. (5) contained within the A member of the Ker μ group is ball Br 

Corollary 1. If f (t, s, 0) is constrained by additional Constraints 1–4, then the solutions to 

the integration of the formula (5) are as follows: are generally attractive, as stated in Theory 2. 

Sufficient evidence. See [27]. 

3- Cubic B-Aspline Scaling and Wavelet Function on [0.1] 

In L2(R), you can utilize scaling functions to increase the size of any function. Extending 

these functions outside the integration domain is possible because they are specified across the 

natural line. This article considers B-spline scaling functions with compact support built for the 

bounded interval [0,1]. When using order m semi-orthogonal B-spline scaling functions, the 

requirement. 

2𝐽0 ≥ 𝑔 

Has to be met for there to be one full inner scaling function. 𝜔4,𝑘
(𝑗)

(𝑥) represents these scaling 

functions. We'll employ scaling functions for cubic B-splines (cardinal B-splines of order g = 

4). As a cubic spline, its scaling is denoted.  
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1

6
x3                                                                  0 ≤ x < 1                        

                                          
1

6
(−3x3 + 12x2 − 12x + 24)                 1 ≤ x < 2                                 

A4(x) = ω4(x) =           
1

6
(3x3 − 12x2 + 60x − 44)                   2 ≤ x < 3                           

                                          
1

6
(4 − x)3                                                      3 ≤ x < 4                                                                                                                                   

                                      0                                                             otherwise 

Furthermore, the shape of its two-scale relation is 

ω4(x) =
1

8
ω4(2x) +

4

8
ω4(2x − 1) +

6

8
ω4(2x − 2) +

4

8
ω4(2x − 3) +

1

8
 ω4(2x − 4)    

                                      (1 − 8x)3                                                             0 ≤ x <
1

8
   

     ω4,−3
(3) (x) =  

                                         0                                                            otherwise  

With boundary scale, for example, the scaling factors used for 𝑗0= j = 3 and m = 4 are 

enumerated below.  

                                    896x3 − 288x2 + 24x                                      0 ≤ x <
1

8
   

  ω4,−2
(3)

(x) =            2(1 − 4x)3                                                             
1

8
 ≤ x <

2

8
   

                            0                                                                                  otherwise 

                                 −
1408

3
x3 + 96x2                                                  0 ≤ x <

1

8
   

ω4,−1
(3) (x) =            

896

3
x3 −

576

3
x2 + 36x −

3

2
                                   

1

8
 ≤ x <

2

8
   

                                  −
1

6
(4x − 3)3                                                         

2

8
 ≤ x <

3

8
   

0 otherwise 

ω4,−1
(j) (x) = ω4,k

(3)
(2j−3x), k = −3, −2, −1      j = 3,4 … … …                    

𝜔4,5
(3)(𝑥) = 𝜔4,−1

(3) (1 − 𝑥), 

𝜔4,6
(3)(𝑥) = 𝜔4,−2

(3) (1 − 𝑥) 

𝜔4,7
(3)(𝑥) = 𝜔4,−3

(3) (1 − 𝑥) 

𝜔4,𝑘
(𝑗)

(𝑥) = 𝜔
4,2𝑗 −𝑘−4

(3)
( 1 − 2𝑗−3𝑥),     𝑘 = 2𝑗 − 3, … … , 2𝑗 − 1,     𝑗 = 3,4 … … …                    

Inner scaling: 
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256

3
𝑥3                                                                    0 ≤ 𝑥 <

1

8
 

                        −256𝑥3 − 128𝑥2 − 16𝑥 +
2

3
                              

1

8
 ≤ 𝑥 <

2

8
       

𝜔4,0
(3)(𝑥) =       256𝑥3 − 256𝑥2 + 80𝑥 −

22

3
                                

2

8
 ≤ 𝑥 <

3

8
     

                            
32

3
(1 − 2𝑥)3                                                         

3

8
 ≤ 𝑥 <

1

2
   

0    Otherwise 

                              
1

6
(8𝑥 − 1)3                                                       

1

8
 ≤ 𝑥 <

2

8
   

                        −256𝑥3 + 224𝑥2 − 60𝑥 +
31

6
                           

2

8
 ≤ 𝑥 <

3

8
       

𝜔4,1
(3)(𝑥) =       256𝑥3 − 352𝑥2 + 156𝑥 −

131

6
                          

3

8
 ≤ 𝑥 <

1

2
     

                            
1

6
(5 − 8𝑥)3                                                          

1

2
 ≤ 𝑥 <

5

8
   

0     Otherwise 

                              
4

3
(4𝑥 − 1)3                                                         

2

8
 ≤ 𝑥 <

3

8
   

                        −256𝑥3 + 320𝑥2 − 128𝑥 +
50

3
                          

3

8
 ≤ 𝑥 <

1

2
       

𝜔4,2
(3)(𝑥) =       256𝑥3 − 448𝑥2 + 256𝑥 −

142

3
                            

1

2
 ≤ 𝑥 <

5

8
     

                            
1

6
(6 − 8𝑥)3                                                            

5

8
 ≤ 𝑥 <

3

4
   

0       Otherwise 

 

                              
1

6
(8𝑥 − 3)3                                                         

3

8
 ≤ 𝑥 <

1

2
   

                        −256𝑥3 + 416𝑥2 − 220𝑥 +
229

6
                         

1

2
 ≤ 𝑥 <

5

8
       

𝜔4,3
(3)(𝑥) =       256𝑥3 − 544𝑥2 + 380𝑥 −

521

6
                             

5

8
 ≤ 𝑥 <

3

4
     

                            
1

6
(7 − 8𝑥)3                                                             

3

4
 ≤ 𝑥 <

7

8
   

0       Otherwise 
 

                          
1

6
(8𝑥 − 4)3                                                               

1

2
 ≤ 𝑥 <

5

8
   

                        −256𝑥3 + 416𝑥2 − 220𝑥 +
229

6
                          

5

8
 ≤ 𝑥 <

3

4
       

𝜔4,4
(3)(𝑥) =       256𝑥3 − 544𝑥2 + 380𝑥 −

521

6
                              

3

4
 ≤ 𝑥 <

7

8
     

                          
1

6
(7 − 8𝑥)3                                                                

7

8
 ≤ 𝑥 < 1   

0        Otherwise 
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𝜔4,𝑘
(𝑗)

(𝑥) = 𝜔4,𝑘
(3)

(2𝑗−3𝑥 − 𝑘),      𝑘 = 0,1, … … . . 2𝑗 − 4      𝑗 = 3,4 … … …                    

 𝜓4(𝑥) =
1

8!
𝜔4(2𝑥) +

124

8!
𝜔4(2𝑥 − 1) +

1677

8!
𝜔4(2𝑥 − 2) +

7904

8!
𝜔4(2𝑥 − 3)

+
18482

8!
 𝜔4(2𝑥 − 4) − 

24264

8!
 𝜔4(2𝑥 − 5) +

18482

8!
 𝜔4(2𝑥 − 6)

−
7904

8!
 𝜔4(2𝑥 − 7) +

1677

8!
 𝜔4(2𝑥 − 8) −

124

8!
 𝜔4(2𝑥 − 9)

+
1

8!
 𝜔4(2𝑥 − 10)  

Cubic B-spline wavelet  𝜓4(𝑥) is shown in Fig.3. The system's inner and border wavelet 

analysis is obtained through the application of [8, 11]. 

4. Functional Approximation 

A function f (x) specified in the interval [0,1] can be rendered in the cubic B-spline scale 

field Ғ𝐽0 

 For any fixed positive integer 𝐽0 as 

g(x) = ∑ 𝑐𝑗0.𝑖𝜑4.𝑖

(3 )
(𝑥)

2𝑗0−1

𝑖=−3

+ ∑ ∑ ⅆ𝑖.𝑘𝛹4.𝑘
(𝑖)(𝑥) = 𝐶𝑇𝛹(𝑥)                                               (𝟗)

2ⅈ−4

𝑘=−3

𝑗0

𝑖=3

 

Where 𝜑4.𝑖
(𝑗0)

 and 𝛹4.𝑘
(𝑖)

are wavelet and scaling functions should eq (9)'s infinite series be 

shortened, respectively. And for j=3, it can be expressed as follows: 

g(x) = ∑ 𝑐𝑗0.𝑖𝜑4.𝑖
(𝑗0)

(𝑥)7.

𝑖=−3 + ∑ ∑ ⅆ𝑖.𝑘𝛹4.𝑘
(𝑖)(𝑥) =2ⅈ−4

𝑘=−3
𝑗0
𝑖−3 𝐶𝑇𝛹.

.(x)                                       (10) 

Where C and 𝛹(𝑥) are (2𝑗0+1 + 5)x1 vectors given bye 

C=”[𝑐−3,………,𝑐7,,ⅆ3,−3,…………ⅆ3.4…………….ⅆ𝑗0,−3…………….
ⅆ𝑗2j−4 ,].

𝑇 "                                            (11) 

𝛹 =[𝜑4.−3 
(3)

… … . . 𝜑4.−3
(3)

, 𝛹4.−3
(3)

… 𝛹4.−3
(3)

… 𝛹4.4
(3)

… … 𝛹
𝑗0.2j−3

(3)
].𝑇                                              (12) 

With  

𝐶1 = ∫ 𝑓(𝑥)𝜑4.1
(3)(𝑥) ⅆ𝑥, … . 𝑖 = −3, … … 7.

1

0
                                                                         (13) 

ⅆ𝑗.𝑘 = ∫ 𝑓(𝑥)𝜓4.1
(𝑗)(𝑥) ⅆ𝑥, … . 𝑗 = 3, … 𝐽0. 𝑘 = −3 … … 2𝐽0

1

0
− 4,                                          (14) 

Where 𝜑4.1
(3)

  and 𝜓4.𝑘
(𝑗)

 have dual purposes. of 𝜑4.1
(3)

𝑖 = −3, … … 7  and 𝜓4.𝑘
(𝑗)

=  𝑗 = 3, … 𝐽0 

According to. By using linear combinations, these can be obtained. Of 

𝜑4.1
(3)

  and 𝜓4.𝑘
(𝑗)

 

     𝜑 =[𝜑4.−3   ,
(3)

(𝑥)𝜑4.−2 
(3)

(𝑥) … … . . 𝜑4.−7
(3)

(𝑥)  ].𝑇                                                                    (15) 

     𝛹 =[𝛹4.−3
(3)

(𝑥) … 𝛹4.4
(3)

(𝑥) … … 𝛹
4.2j−4

(3)
(𝑥)].𝑇                                                                      (16) 
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Using(9)-(13),(15,16) We obtain 

∫ 𝜙(𝑥)𝜙𝑇(𝑥) ⅆ𝑥

1

0

= 𝐿1                                                                                                                       (𝟏𝟕) 

 

L is [11 × 11].  

Assume ϕ(x) serves dual functions. Of ϕ(x) as presented in the Equation  

𝜑 =[𝜑4.−3   ,
(3)

(𝑥)𝜑4.−2 
(3)

(𝑥) … … . . 𝜑4.−7
(3)

(𝑥)  ].𝑇 

Using (8) (9) (11) 

∫ 𝜙(𝑥)𝜙𝑇(𝑥) ⅆ𝑥

1

0

= 𝐾11 

where the identity matrix is [11 × 11]. Consequently, we obtain 

ѿ=𝜙−1𝜔                                                                      (18) 

1

56
 

7

640
 

31

13440
 

1

566720
 0 0 0 0 0 0 0 

7

640
 

31

1120
 

5

256
 

29

6720
 

1

26880
 0 0 0 0 0 0 

31

13440
 

5

256
 

183

4480
 

283

10080
 

239

80640
 

1

40320
 0 0 0 0 0 

1

6720
 

29

6720
 

283

10080
 

151

2520
 

397

13440
 

2

672
 

1

40320
 0 0 0 0 

0 
1

26880
 

239

80640
 

397

13440
 

151

2520
 

397

13440
 

2

672
 

1

40320
 0 0 0 

0 0 
1

40320
 

2

672
 

397

13440
 

151

2520
 

397

13440
 

2

672
 

1

40320
 0 0 

           

0 0 0 
1

40320
 

2

672
 

397

13440
 

151

2520
 

283

10080
 

29

6720
 

1

6720
 0 

0 0 0 0 
1

40320
 

2

672
 

397

13440
 

151

2520
 

283

10080
 

29

6720
 

1

6720
 

0 0 0 0 0 
1

40320
 

239

80640
 

283

10080
 

183

4480
 

5

256
 

31

13440
 

0 0 0 0 0 0 
1

26880
 

29

6720
 

5

256
 

31

1120
 

7

640
 

0 0 0 0 0 0 0 
1

6720
 

31

13440
 

7

640
 

1

56
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Theorem 3: Let 𝑒𝑗(𝑥) denote the approximate errors of f in (9) using cubic B-spline 

scaling function within space Vj; therefore, || = O𝑒𝑗(𝑥) (2−4j). 

Proof. By using (9) and (10). We get 

𝑒𝑗(𝑥) = ∑ ∑ ⅆ𝑖.𝑘𝛹4.𝑘
(𝑖)(𝑥)

2ⅈ−4

𝑘=−3

∞

𝑖=𝑗

 

By putting 

𝑐𝑗 = 𝑚𝑎𝑥{|𝜓1(𝑥)|; 𝑘 = −3, … … 2ⅈ − 4}    We obtain 

And 

∑ |ⅆ𝑖.𝑘𝛹4.𝑘
(𝑖)(𝑥)|

2ⅈ−4

𝑘=−3

≤ 𝛼𝛽𝑐𝑖

2−4!

4!
 

As a result, 

|𝑒𝑗(𝑥)| ≤
1

4!
𝛼𝛽 ∑ 𝑐𝑖2

−4!

∞

𝑖=𝑗

 

The current inequality allows us to get 

|𝑒𝑗(𝑥)| = 𝑂(2−4!)                                                                         (19) 

The order of error depends on the level j. as ()demonstrates. The approximation error will 

decrease with increasing degree of j. 

5. Method of Solvation 

This part outlines our primary approach, which combines the fixed point with the cub-spline 

scale function. Next, we consider the method's convergence. 

5.1 The New Numerical Method's Description: When considering the integral Eq. (5). To 

streamline this procedure, assume that each value of t is confined to the interval where the 

maximum level of β(t) is constant. assume t ∈ [0, a] without losing generality. Allow me to 

0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡𝑚 = 𝑎., 

By G locations in [0, a]. 

That are evenly separated. By the proof, K is a continuous operator on (Br) and had a fix-

point x in the Br—theorem 2. Eq. (1) has at least one solution in Br under the assumptions 1–

4. Additionally, evenly locally appealing solutions for problems (1). This section provides a 

concise overview of the evidence required in the subsequent sections. For additional 

information, please refer to [6].  

Initially, parameter G was defined by the creators in [6].  in a way that ensures that for any 

x ∈ Br, 
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𝑥(𝑡) = (K𝑥)(𝑡) = 𝑓 ⋅ (𝑡,𝑥.(𝛼(𝑡)), ∫ 𝑢 (𝑡, 𝑠, 𝑥(𝛾(𝑠))) ⅆ𝑠
𝛽(𝑡)

0

)    , 

Now, we treat operator H using the fix-point approach. for 𝒙𝟎 (t) ∈ Br as well as Points 

𝑡𝐼 (i = 1, . . …….. ,G) 

𝑥𝑘+1(𝑡𝑖) = (𝐻𝑘)(𝑡𝑖) = 𝑓 ⋅ (𝑡𝑖 ,
𝑥𝑘(𝛼(𝑡)), ∫ 𝑢 (𝑡𝑖 , 𝑠, 𝑥𝑘(𝛾(𝑠))) ⅆ𝑠

𝛽(𝑡)

0

)  𝐾 = 0,1, .        (𝟐𝟎) 

The integral is to be approximated. Numerically inside the intervals  [0, β(𝑡𝑖)] in (21) and 

𝑥𝑁+1(𝑡), we apply A Simpson rule that is composite and applies to equally distant L points. 

Today, we utilize cub-spline scaling methods as the foundation for our estimations. 𝑥𝑁+1(𝑡) to 

get ready for the following iteration. 𝑥𝑁+1(𝑡)We can immediately calculate using the 

coefficients of the scaling functions (5)–(14) from the previous section without having to solve 

any systems of algebraic equations as 

𝑧𝑖 = ∫ .
1

0
𝑥𝑘+1(𝑡)𝜛4.𝐼

(3)(𝑡) ⅆ𝑡 , 𝐽 = −3, … . .7  

where, as previously stated 

[𝜛4.−3
(3) (𝑡), 𝜛4.−2 

(3) (𝑡), … … . 𝜛4.7
(3)

(𝑡)]𝑇 = 𝑃−1 [𝜔4.−3
(3) (𝑡), … … . 𝜔4.7

(3)
(𝑡)]𝑇 

Given the values of xk+1(ti) (i = 1,..., H), we compute cj. By employing the composite Simpson 

rule, we arrive at the following;  

𝑥𝑘+1(𝑡) ≈ ∑ 𝑐𝑗.
𝜑4.

(3)
(𝑡)7

𝑖=−3                                                                                                   (21) 

We repeat the iterations until the difference between subsequent iterations,  𝑥𝑘(𝑡), is as 

small as we need for the appropriate level of precision. The end values of 𝑥𝑘+1(𝑡) correspond 

to an operator's M fixed point k at that level of precision. Consequently, we make an 

approximation of Equation (5). The following briefly describes the numerical approach. 

5.2 There is a Relationship Between Teachers K and G: The teacher k represents the 

number of iterations within the fixed-point method, while G, according to the assumptions of 

Theory (2), are distant and central points within the interval [0. a]. Through the practical 

application of numerical examples, we continue with the iterations until we achieve a small 

difference between consecutive iterations. These small differences are essential for achieving 

high accuracy, ensuring that the terminal parameters x(t) converge to a stationary point for 

operator Z. Therefore, we are approaching an accurate solution to the Eq. (5). We observe the 

accuracy of the method used through the numerical examples in examples [7] and [8], 

comparing them with the methods used in previous studies. We notice that an increase in k and 

G leads to an increase in accuracy and a decrease in the absolute error rate. The iterations keep 

increasing until the approximate solutions get closer to the exact solutions. 
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6- Results: 

This article illustrates the method's accuracy by presenting numerical illustrations for the 

integral equation eq(5). We utilized the symbol k to represent the number of iterations in the 

fixed-point method. And K to Represent the approximate value x(t) in the iteration X(t), which 

is based. On this, we can calculate the absolute error ratio to x(t) in iteration k as follows: is 

represented with 𝑥𝐾(𝑡𝑖) 

|(𝑋(𝑡)) − 𝑥𝐾+1(𝑡)| 

Hence, it is possible to determine the most significant (absolute error in iteration K as an 

‖𝑥 − 𝑥𝐾‖ = 𝑚𝑎𝑥|𝑥(𝑡𝑖) − 𝑥𝐾(𝑡𝑖)| 

Furthermore, one can compute the discrepancy located between the approximate at  K and 

K+1 as  

|𝑥𝐾+1(𝑡) − 𝑥𝐾(𝑡)|. 

As a result, we acquire 

‖𝑥 − 𝑥𝐾‖ = 𝑚𝑎𝑥|𝑥𝐾+1(𝑡) − 𝑥𝐾(𝑡𝑖)| 

We used different values of k and G to solve the following numerical examples. In these 

examples, we applied the formulas in the articles above (17) and (18) to derive approximate 

numerical solutions. The calculations and results were carried out using Mathematics 8. 

Example (1) : non-linear Fredholm–Hammerstein equation that follows 

𝑥(𝑡) = 𝑠𝑖𝑛 (
𝜋

2
𝑡) − 2𝑡𝑒−𝑡𝑙𝑛(3) + 𝑒−𝑡 ∫.

1

0

4𝑡𝑠 + 𝜋𝑡𝑠𝑖𝑛(𝜋𝑠)

𝑥(𝑠)2 + 𝑠2 + 1
ⅆ𝑠, 

Table 1: Absolute errors for Example 1 across various values of K. 

t k=2 k=5 k=10 

0 0 0 0 

0.1 0.127890 × 10−1 0.953012 × 10−5 0.362567 × 10−9 

0.2 0.214093× 10−1 0.167951× 10−4 0.119137 × 10−8 

0.3 0.227909× 10−1 0.197670× 10−4 0.139588× 10−7 

0.4 0.169766× 10−1 0.149812× 10−4 0.402300× 10−7 

0.5 0.797177× 10−2 0.497886× 10−4 0.934621× 10−7 

0.6 0.384727× 10−4 0.334333× 10−5 0.378213× 10−7 

0.7 0.472688× 10−2 0.660849× 10−5 0.269398× 10−7 

0.8 0.631157× 10−2 0.612657× 10−5 0.301620× 10−7 

0.9 0.572703× 10−2 0.453392× 10−5 0.464820× 10−7 

1 0.410323× 10−2 0.290023× 10−5 0.301723× 10−8 

Possesses an exclusive, precise resolution 

. x(t) = 𝑠𝑖𝑛 (
𝜋

2
𝑡). Functional, the value of β(t) is 1, and γ(t) is equal to t. 

𝑓(𝑡, 𝑥, 𝑦) = 𝑠𝑖𝑛 (
𝜋

2
𝑡) − 2𝑡𝑒−𝑡𝑙𝑛(3) + 𝑒−𝑡𝑦 
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And 

𝑢(𝑡, 𝑠, 𝑥)
4𝑡𝑠 + 𝜋𝑡𝑠𝑖𝑛(𝜋𝑠)

𝑥2 + 𝑠2 + 1
, 

Are continuous functions that meet Theorem 2's presumptions. see  

ϕ(t) Equal t, k Equals 0, m(t) = e^(-t), where D = 1.24575 

We make a decision x0(t) = sin (
π

2
t) − 2tⅇ−tln(3) ∈ [−r, r], whⅇrⅇ r =

M0

1−n
. = 3.82984. 

Table 1 displays the absolute values of defects for (G = 200 and  L = 200) mesh points. The 

errors associated with a single iteration are represented by absolute values in Table 2. for varied 

numbers of mesh points. Furthermore, errors are diminished by conducting additional 

iterations. Refer to Figure 1. Where the [ log10(||𝑥𝑘 − x||) = log10 (max |𝑥𝑘(𝑡𝑖) − x(𝑡𝑖)|),  to 𝑡𝑖 

= i/10 for any (i = 0, 1…… , 10) 

Example (2): Examine the subsequent information. Kind (42, 43) of non-linear function 

integral equation of the Volterra.  

𝑥(𝑡) =
𝑡

1 + 𝑡2
 𝑥(𝑡) + ∫  𝑒−𝑡   

𝑡

0

𝑠𝑥(𝑠)

1 + |𝑥(𝑠)|
ⅆ𝑠 

Table 2:  Absolute Errors within the EX.1 K Equal 10, L Equal 200, many G variables 

t G=50 G=100 G=200 

0 0 0 0 

0.1 0.170303× 10−5 0.449863× 10−5 0.362567 × 10−9 

0.2 0.307753× 10−5 0.805820× 10−5 0.119137 × 10−8 

0.3 0.409215× 10−5 0.104431× 10−4 0.139588× 10−7 

0.4 0.478569× 10−5 0.117460× 10−4 0.402300× 10−7 

0.5 0.521326× 10−4 0.121565× 10−4 0.934621× 10−7 

0.6 0.540250× 10−4 0.1200099× 10−4 0.378213× 10−7 

0.7 0.548649× 10−4 0.116624× 10−4 0.269398× 10−7 

0.8 0.547760× 10−4 0.110637× 10−4 0.301620× 10−7 

0.9 0.542085× 10−4 0.105845× 10−4 0.464820× 10−7 

1 0.532832× 10−4 0.101492× 10−4 0.301723× 10−7 
 

 

 

 

 

 

 

Figure 1: Ex(1) Illustrates the Logarithm of t the Utmost Error Occurring During Every Iteration. 
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Which has a unique, precise solution. The value of x(t) is zero. The formulas are: α(t) = 

β(t) = γ(t) = t: We can ascertain t by employing fundamental mathematics. the solution to 

which is unique and exact x(t) = 0. The functions α(t), β(t), and γ(t) are all defined as t. 

𝑓(𝑡, 𝑠, 𝑥)
𝑡𝑥

1 + 𝑡2
+ 𝑦, 

And 

𝑢(𝑡, 𝑠, 𝑥) = 𝑒−𝑡
𝑠𝑥

1 + |𝑥|
 

Satisfying the requirements of the second theorem with ϕ(t) Equal t, k Equal 1/2, m(t) Equal 

1, and D = 0.270671, The procedure is implemented. where x_0(t) Equal 0.5 ∈ Br, where r = 

1.08268. Table 3 displays the exact error values, while Figure 2 depicts the logarithm of the 

highest error associated with iterations, especially for G equals 80 and L equals 50 mesh points.  

Example (3): We investigate the non-linear Volterra functional integral problem using 

proportional delay. 

x(t)=cos(t)- sin (
ⅇ

−𝑐𝑜𝑠2(
1
2

)
−ⅇ−1

1+t2 ) + sin (∫    
𝑡/2

0

𝑠𝑖𝑛(2𝑠)ⅇ−𝑥2(𝑠)

1+t2 ⅆ𝑠), 

Table3:  Fundamental errors for Example 2 over several levels of K 

t k=5 k=25 k=50 

0 0 0 0 

0.1 0.462407 × 10−5 0.808969× 10−13 0.306027× 10−20 

0.2 0.131506 × 10−3 0.268324 × 10−12 0.107748 × 10−19 

0.3 0.790865 × 10−3 0.275392× 10−12 0.171832× 10−19 

0.4 0.243661 × 10−2 0.300346× 10−12 0.114517× 10−19 

0.5 0.512032 × 10−2 0.649454× 10−10 0.156528× 10−18 

0.6 0.0.835707× 10−2 0.635856× 10−9 0.148931× 10−17 

0.7 0.114419× 10−1 0.316263× 10−8 0.185272× 10−16 

0.8 0.138099× 10−1 0.802217× 10−8 0.131274× 10−15 

0.9 0.151984× 10−1 0.129801× 10−7 0.334904× 10−15 

1 0.156251× 10−1 0.149012× 10−7 0.439281× 10−15 
 

 

 

 

 

 

 

Figure 2: The logarithm of the highest error associated with every iteration in Example 2. 
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Which possesses the precise solutions x(t) = cos(t). The functions such as β(t) = t - (1 - q)t for 

q = 1/2 and γ(t) Equal t can be readily demonstrated to be continuous. Additionally, α(t) may be 

Any continuous operation that satisfies Condition 1. 

f(t,x,y)=cos(t) - sin (
ⅇ

−𝑐𝑜𝑠2(
1
2

)
−ⅇ−1

1+t2 ) + sin (𝑦) 

And                                 u(t,s,x)=cos(t)- sin (
ⅇ−𝑥2

sⅈn (2x)

1+t2
) 

Meet the conditions of Theorem 2, given k = 0, m(t) = 1, ϕ(t) = t, with D ranging from 0.25. We  

 Derive r = 1.5 and utilize  x0(t)= cos(t)- sin (
ⅇ

−𝑐𝑜𝑠2(
1
2

)
−ⅇ−1

1+t2 ) ∈  Br  

The preliminary function. Both Table 4 and the following figure illustrate the absolute errors 

with the logarithm of the highest Iteration-related absolute errors for L = 100 and G = 200 centered 

within the range [0,2].  

Table 4: Approximate Errors for the Third Example for Various Values of K 

t k=2 k=5 

0 0 0 

0.2 0.234328 × 10−7 0.239081× 10−7 

0.4 0.146720 × 10−7 0.360304 × 10−7 

0.6 0.323011 × 10−6 0.914190× 10−7 

0.8 0.863026 × 10−6 0.637923× 10−9 

1 0.205252 × 10−5 0.284243× 10−9 

1.2 0.539092× 10−5 0.878520× 10−7 

1.4 0.113864× 10−4 0.593672× 10−7 

1.6 0.154702× 10−4 0.506919× 10−7 

1.8 0.252727× 10−4 0.231660× 10−7 

2 0.852385× 10−7 0.116951× 10−8 
 

 

 

 

 

 

Figure 3. Logarithm of the greatest error associated with each repetition in Example (3). 

Example (4): The subsequent non-linear integral Equation for Volterra function 
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Contains a precise solution. The value of x(t) is equal to e. The functions to use are α(t) = t, 

β(t) = t, and γ(t) Equal 3. 

Comply with the first condition of Theorem 2. Furthermore, functions as well 

 

 

And                                                     𝑢(𝑡, 𝑠, 𝑥) =
2ⅇ−𝑡𝑥

1+x2  

Fulfilled the criteria of Theorem 2–4 using n = 0.111641, ϕ(t) Equal t, G(t) = t²/(1+t⁴), D = 

0.5, and M0 = 2. Thus, we have r = 2.25134 and choose x0(t) ∈ Br. The extent of errors  

Table 5: Absolute Errors of Example 4fore 𝐱𝟎(𝐭) =0.5and Different Value of K 

t K=2 K=5 K=10 

0 0 0 0 

0.1 0.116062 × 10−4 0.302756 × 10−6 0.302763 × 10−6 

0.2 0.150179× 10−3 0.164254× 10−6 0.163322 × 10−6 

0.3 0.597392× 10−3 0.518220× 10−6 0.551065× 10−6 

0.4 0.139726× 10−2 0.963558× 10−6 0.626378× 10−6 

0.5 0.237648× 10−2 0.135418× 10−5 0.213892× 10−6 

0.6 0.319742× 10−2 0.444057× 10−5 0.933230× 10−7 

0.7 0.356863× 10−2 0.811830× 10−5 0.411882× 10−7 

0.8 0.342076× 10−2 0.110323× 10−4 0.286523× 10−6 

0.9 0.291232× 10−2 0.133351× 10−4 0.152142× 10−6 

1 0.22864× 10−2 0.136016× 10−4 0.216699× 10−6 

 

Table 6:Absolute errors of Example 4for K=5 and different values of 𝐱𝟎(t) 

 

 

 

 

 

 

Table 5 provides details of the iterations, which correspond to G = 150 and L = 100 mesh 

points. Table 6 displays the maximum inaccuracy values for a single iteration according to 

various initial locations and a consistent number of mesh points. Figure 4 illustrates how 

increasing the number of repetitions reduces mistakes. 

   Example (5): Examine the integral Equation shown below [10]. 

𝑥(ℎ) =
𝑠𝑖𝑛(ℎ𝑥( √ℎ

3
))

1+ℎ2 + 𝑎𝑟𝑐𝑡𝑎𝑛 (∫
√1+𝑠𝑥2(𝑠2)+

4

(1+ℎ7)

√1

𝑜

ℎ𝑠11(1+𝑥4(𝑥2))

(1+𝑥4(𝑥2))
) ⅆ𝑠. 

t x0(t)=0.5 x0(t) = 1 x0(t)=2 

0 0 0 0 

0.1 0.302756 × 10−6 0.302762 × 10−6 0.302777 × 10−6 

0.2 0.164254× 10−6 0.163079× 10−6 0.161031 × 10−6 

0.3 0.518220× 10−6 0.562475× 10−6 0.637346× 10−6 

0.4 0.963558× 10−6 0.420642× 10−6 0.419744× 10−6 

0.5 0.135418× 10−5 0.165281× 10−5 0.595858× 10−5 

0.6 0.444057× 10−5 0.553731× 10−5 0.188352× 10−4 

0.7 0.811830× 10−5 0.140381× 10−4 0.417234× 10−4 

0.8 0.110323× 10−4 0.251467× 10−4 0.680604× 10−4 

0.9 0.133351× 10−4 0.133351× 10−4 0.880009× 10−4 

1 0.136016× 10−4 0.397919× 10−4 0.991856× 10−4 
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   Using basic math, we can determine that 

∝ (ℎ) = √𝑡 ,3
  𝛽(ℎ) = √ℎ,

.
 y(t)= ℎ2 

𝑥(ℎ) =
𝑠𝑖𝑛(ℎ𝑥( √ℎ

3
))

1+ℎ2
, +𝑎𝑟𝑐𝑡𝑎𝑛(y) 

And 

𝑢(𝑡. 𝑠, 𝑥) =
√1 + 𝑠𝑥2(𝑠2) +
4

𝑡𝑠11(1 + 𝑥4)

(1 + ℎ7)(1 + 𝑥4)
 

Fulfill the requirements of Theory 2 accompanied by { D = 1.0184, k = 0.5, m(t) = 1, and 

ϕ(t) = h.} As a result, we determine that the beginning function belongs to the ball Br and get( 

r = 4.07362.) In contrast, since f (t, x, 0) is a function restricted in its range, Corollary 1's 

requirement are met. As a result, there is at least one solution to the integral Equation, and These 

solutions possess universal appeal. Upon completing 50 cycles, we ascertain the mistake for (L = 50 

and G is equal to 80) mesh points.||𝑥𝑁+1− 𝑥𝑁 || = maxi |𝑥𝑁+1 (𝑡𝑖) − 𝑥𝑁(𝑡𝑖)| = 2.37155 × 10−8, 

where h_i = i/10 where i = 0, 1, ..., 10. In the figure, the response is an approximation obtained 

after 50 iterations. as demonstrated by the explanation that follows x(t) is an element of Br 

Example (6): Examine: Kindly assess the presented non-linear Fredholm integral. [44,45] 

𝑥(𝑡) = 1 + 𝑡𝑒 − ∫ (𝑡 + 𝑆)𝑒𝑋(𝑆) ⅆ𝑆
1

𝑜
. 

 

 

 

 

 

 

Figure 4: Approximation Solution of Example 5 after 50 Iteration 

The precise solution is x(t) = t. This section addresses the solution of the integral Equation 

utilizing our suggested method and juxtaposes prior results with the new findings delineated 

in Table 7 for K = 30, G = 200, and L = 200. 

Example (7): The following integral Equation 

𝑥(𝑡) = 𝑠𝑖𝑛(𝑡)2 + 1 − ∫ 3 𝑠𝑖𝑛(𝑡 − 𝑠)𝑥 (𝑠)2 ⅆ𝑠
𝑡

0

 

 

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq


Al-Sharea MJA. / Al-Kitab Journal for Pure Sciences (2025); 9(2):62-83.

 

 
Web Site: https://isnra.net/index.php/kjps   E. mail: kjps@uoalkitab.edu.iq

 
80 

Table 7:As shown in Figure 3, the absolute errors are as follows: K=30, G=200, and D=200. 

t Methodology 

of[44] 

Methodology 

[45] 

Methodologically presented 

 

0 2 × 10−3 2.58 × 10−6 8.96539 × 10−10 

0.2 1 × 10−2 7.35 × 10−6 7.99324 × 10−9 

0.4 2 × 10−2 7.93 × 10−6 4.23015 × 10−−8 

0.6 1 × 10−2 2.55 × 10−6 8.28779 × 10−9 

0.8 0 × 10−3 3.98 × 10−6 2.82284 × 10−7 

1 1 × 10−2 2.64 × 10−6 5.62541 × 10−8 

 

Table 8:Contains The Solutions to Example 7: K = 10, G = 250, And D = 200, With Both Exact And  

Approximate Values 

t Methodology 

of[44] 

Methodology 

of[45] 

Methodologically presented 

 

PERFECT RESOLUTION 

 

0 1.0000 1.00000 1.000000000 1.000000000 

0.1 0.9952 0.99500 0.995004165 0.995004165 

0.2 0.9800 0.98006 0.980066580 0.980066577 

0.3 0.9554 0.95533 0.955336485 0.955336489 

0.4 0.9210 0.92105 0.921060993 0.921060994 

0.5 0.8775 0.87756 0.877582565 0.877582561 

0.6 0.8255 0.82531 0.825335614 0.825335614 

0.7 0.7648 0.76482 0.764842185 0.764842187 

0.8 0.6969 0.69669 0.696706707 0.696706709 

0.9 0.6217 0.62159 0.621609968 0.621609968 

1 0.5405 0.54028 0.540302303 0.540302305 

The exact answer is x(t) Equal cos(t). This Equation fails to satisfy the following criteria: to theory 

2, we employ the technique described in this article. Furthermore, the findings of our 

investigation have been compared with the results [46,47] Table 8.  

7. Conclusion 

In this research paper, we applied fixed-point technique with cubic B-Spline scaling function 

to obtain a numerical solution for a set of non-linear integral equations without the need for 

algebraic systems. Using the numerical examples and the obtained results, as well as equation 

number (5), we found that the results are highly accurate and closely approximate the exact 

solution. We compared these results with those obtained from previous studies and observed 

the accuracy of this method. Since the accuracy of this method depends on using larger values 

for G and K, we note that the accuracy will improve with larger values. We continue the 

iterations until we reach a precise solution that approaches the true solution. This method is free 

from scenarios, problems, or excessive computational costs, and it is applicable to equations 

with larger and more complex dimensions. This method has no adverse effects on more 

complex equations. 
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