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Abstract:

This paper examines a category of general nonlinear integral equations. These equations also

include many special cases, such as functional equations and nonlinear integral equations of the
Volterra type. In order to approximate the solutions to numerous physical, chemical, and
biological issues, we implemented an approach that incorporates the fixed-point method and
semi-vertical cubic scaling functions. We also obtain a numerical solution to the integral

equation. Numerical examples illustrate the accuracy and validity of this method.

Keywords: Fixed Point Method, Non-Linear Fredholm Integral Equation, Cubic B-Spline
Wavelets, Scaling Functions, Darbo Condition.
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1. Introduction:
An integral equation is an equation with an unknown function, x(s), under the integral sign

[1-4]. The conventional form of this Equation in x(s) is as follows.

x(0) = F(6) + A [L3) k(t.s)u(s) ds, (1)

k(t,s) is a function that consists of two variables and is referred to as the kernel of the
Equation, while A is a constant parameter. The limits of integration are B(t) and g(t). The
function x(s) appears, defined under the integral sign, as well as the interior and exterior of the
sign. The functions f(t) and k(t,s) have been given previously, and the limits of integration g(t)
and f(t) can be constants, variables, or a combination of a constant and a variable. Integral
equations have multiple forms, and there are two ways to distinguish the Equation, which
depend on the limits of integration.

1- If the limits of integration are constant, the Equation is referred to as the Fredholm

equation and is expressed in the following representation.

x(®) = f(£) + 1 [ k(t.5)u(s) ds 2)
2- When one of the limits of integration is a constant, and the other is a variable, the equation

is considered a Volterra equation and is expressed in the following manner.

x() = f(&) + 1 [ k(t.s)u(s) ds, 3)
Additionally, two varieties of equations are contingent upon the form of the function x(s),

which is defined as follows:
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1- The integral Equation is referred to as a Volterra or Fredholm equation of the first kind

if the unknown function x(s) is present exclusively within the integral sign.
2- A Volterra or Fredholm equation of the second kind is defined as an equation in which
The unknown function u(s) is present both within and outside the integral sign. Suppose the
Function f(s) equals zero in Volterra or Fredholm equations. The integral Equation is referred
to as a homogeneous equation. The Fredholm integral equation of the second kind is called
nonlinear if the function x(s) that appears under the integral sign is nonlinear. Additionally, it

—cos?(:
cos (2)

is expressed in the subsequent manner (e .sin 2(x).....), etc. Accordingly, the Equation

has been formulated as follows.

x(6) = F(t) + A fgf(g)

We want to clarify in this introduction that Fredholm's integral equations can be derived

k(t.s)F (u(s)) ds, (4)

from boundary value problems, and it is essential to remember Eric Fredholm's work on integral
equations and the applied theory from the year (1866-1927). The Swedish scientist developed
the theory of integral equations, and his research paper, presented in 1903 in the Acta
Mathematica, played a fundamental role in establishing operator theory. Integral equations play
a prominent role in applied mathematics, and non-linear integral equations have significant
practical importance, as shown by numerous studies in the field of knowledge, encompassing
biology, traffic theory, optimal control theory, economics, and other engineering sciences [5-
8]. Numerous sources have examined functional integral equations' existence and analytical
behaviour [5, 9, 10] using non-compactness measure techniques and fixed-point theories. In
references [10], scholars Jalilian and Aghanjani presented numerous results related to the
existence and unified universal gravity and the local gravity of solutions to the functional

integral Equation.

B(®)
x(t) = (Kx)(D) = f(px,(a(t)), j u(tsx(v())) ds) ,  te[o,00] (5)
0

These results were presented through the measure of non-compactness. These results were
reached by the scientists Jalilian and Aghanjani, who worked to improve and expand upon the
findings that emerged in other studies. Most functional integral equations are not amenable to
analytical solutions; therefore, numerical methods are indispensable. Consequently, numerical
methods are implemented to ascertain an Approximately calculated solution. The numerical
solution of integral equations can be approached using projection, iterative, and Nystrom
methods [11-12]; the references include the definitions of the collocation approaches [13, 14-
17]. Galerkin methods are used to find numerical solutions for Fredholm integral equations, as

outlined in the references [ 13, 14, 17-21] Spline functions, wavelets, product integration,
P,
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homotopy analysis approaches, homotopy perturbation, Adomian decomposition method,

interpolation of polynomials methods, suboptimal trajectories, and multigrid methods are all
viable alternatives. The Nystrom procedures are mentioned in the references [11-14, 21, 22]. In
a few articles, the approximate numerical representation of the solution has been analyzed.
Composition techniques are the foundation of Numerical approaches to solving functional
integral equations [23-30], homotopy perturbation methods [25,26-32], Lagrange and
Chebyshev interpolation methods [27,28,32-38]. The various studies in most numerical
methods addressed by previous research transform the integral Equation into a linear or non-
linear algebraic equation system. This paper presents a numerical solution for an integral
equation utilizing a hybrid iterative approach that combines the fixed-point method with
trapezoidal scaling functions. The method does not rely on any equation-solving system. The
objective of employing this method for non-linear functional integral equations is to achieve a
more precise solution with less error. We successfully attained favorable outcomes with this
strategy and further elaborated on the findings presented in other investigations. The
investigation is structured as follows: In the first section, the scholars Jalilian and Aghanjani
provide an introduction to integral equations and a definition of equation number (5). The
second section of the research provides the definitions necessary for effectively composing this
scientific paper. In the third section, we examined several findings that pertain to having existed
and the allure of the aforementioned integral Equation. In the fourth section, we introduced the
development of cubic B-spline functions within the interval [0.1], as documented in sources
[39-42]. In the fifth section, we provide an explanation of the strategy used in this research's
solution method and the method by which we approach the genuine solution. Conversely, in the final

section, we provided numerical examples to demonstrate the precision of this methodology and

contrasted the accuracy of these numerical results with those from prior research.

2. Background Concepts

We provide some definitions and findings in this section relevant to the rest of the paper.
BC(R.) is a branch with limited space, but operations continue on R, furnished with a
conventional standard. ||z|| = sup{|z(t)| : t ER,, }.Let E Let be an infinite-dimensional Banach
space containing the zero element. element 6 and norm || - || Indicate the closed ball with
radius r and center at x by writing B(z, r). Closure and convex property of Z, a nonempty
subset of E, are shown by the symbols Z and Conv Z, respectively. Let also mg be all
relatively compact combinations: their family and n; denote the family of all nonempty

bounded subsets of E. We employ the concept found in [4] for the non-compactness metric.
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Definition 1. When a mapping v: my - R, meets specific requirements, it can indicate

non-compactness in E.

1. a family ker u = {X € mg : u(x) = 0} is not-empty and ker x C ng.

2. XC Y = v(X) < v(Y).

3. u(Z) =u(2).

4. u(Conv x) = u(x).

5.u(AX+ (1 =AY ) <Au(x) + (1 - A)u(Y) for A€ [0, 1].

6. write an equation of closed originating from sets (Xn) from nE such that Xy,,; € Xn(n =1,
X, is

2, ... ) and if limx(X)=0 consequently, the intersection emerged. X, = ﬂ:_l
n—-oo -

nonempty. Given the Example of Banas and Goebel, we present a Darbo-type fixed-point
theorem.[9]
Theorem (1): | will define E as a closed, convex, limited, and not-empty subset of the

Banach space divided into sub-sets C.

Let L: E — E a constant was present. Mapping presupposes that there is a consistent. Z.€ [0,
1) thus, u(F(X)) < kw(X) before every non-empty sub-group of C that. Subsequently, L contains
a fix-point within the set C. For any not empty bounding sub-set X of BC(R,.), x € X, T >0 and
€20let

wT(x,€) = sup{|x(s) — x(s)|:t,s € [0,T], |t — s| <€}
wTl(x,€) = sup{u’ (x,€): x € X},
wg (x) = limuf (x, €),
wo (x) = Limug (x),
X(t) = x(t) : the variables x € X},
diam the function X(t) = sup{[x(t) - y(t)| : x,y € X
And
uX)=w, (x) + Tl% sup diam the function X( t) (6)
Banas has demonstrated in [43] that the function p measures non-compactness via space.
BE(R..). The solution to the equation as operative from the BE(R.) included in BE (R,)
(Fx)(t) = x(t) (7)
We will discuss the introduction: the attractiveness to Eq. (7).
Definition 2: [9] If a ball B(x,., r) exists in space, then solutions to Eq. (7) are locally
attractive. BC(R,) so that for Any two solutions that are arbitrary to Eq. (7) that are part of

B(xo, r) NQ that is in our possession.
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ll_r)r(}o (x(t) — y(v)) =0 (8)

Resolving the Eq. (7) is locally alluring at a uniform rate (or, similarly, asymptotic stability)
if the limit (4) is consistent concerning B(x,7) N 2,

Theorem 2: There is a minimum of one solution to Eq. (5) in BC(R,.) for all of (5)'s solutions
that have uniform local attraction.

Proof: This section presents a summary of the proof necessary for the subsequent sections.
Refer to [10] for additional information.

First, the authors designed operator K in [2]; hence, for any x € BC(R+)

B(t)
(Hx)(t) = f<t,x_(a(t)),f u (t, s,x(y(s))) ds) )
0

(Hx) is clearly continuous on R,.Next, for each arbitrarily fixed t € R,
[(MX)(1)] < n'[x(a(t))] +Mo,
Where My=sup{|f (t, 0, 0)| : t € R+} +w(2D),
r = 1— Tl.

Subsequently, they demonstrated that given A set that is not vacant X c (Br), u(HX) < nu(X),

with n € U(0,1). Accordingly, the Eq. (1) of functional integration is at least one solution in
British Columbia. (R+), and(x) has a fixed- -point in (Br) for the operator H. based on Theorem
1. Every solution to Eq. (5) contained within the A member of the Ker p group is ball Br

Corollary 1. If f (t, s, 0) is constrained by additional Constraints 1-4, then the solutions to
the integration of the formula (5) are as follows: are generally attractive, as stated in Theory 2.
Sufficient evidence. See [27].

3- Cubic B-Aspline Scaling and Wavelet Function on [0.1]

In L2(R), you can utilize scaling functions to increase the size of any function. Extending
these functions outside the integration domain is possible because they are specified across the
natural line. This article considers B-spline scaling functions with compact support built for the
bounded interval [0,1]. When using order m semi-orthogonal B-spline scaling functions, the
requirement.

20> ¢g

Has to be met for there to be one full inner scaling function. wi’,ﬂ (x) represents these scaling

functions. We'll employ scaling functions for cubic B-splines (cardinal B-splines of order g =

4). As a cubic spline, its scaling is denoted.
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/%g 0<x<1
%(—3X3+12x2—12x+24) 1<x<?2
A(X) = 0y (x) = < =(3x® — 12x% + 60x — 44) 2<x<3
%(4 —x)3 3<x<4

Q) otherwise

Furthermore, the shape of its two-scale relation is

1 4 6 4 1
(1)4(X) = §U)4(2X) + 50)4(2)( - 1) + 50)4(2)( — 2) + §w4(2X — 3) + § (1)4_(2X — 4‘)

(1-8x)° OSX<%

0§25 () =
0 otherwise

With boundary scale, for example, the scaling factors used for j,=j =3 and m = 4 are
enumerated below.

896x3 — 288x2 + 24x 0<x< %
0l =Y 20-40° Lax<?
0 otherwise
/
—143£X3+96X2 0Sx<%
oole(x) =< Sgﬁx3—%x2+36x—% = Sx<§
— = (4x—3)3 2 <x<l
\_
0 otherwise

0P () =0l (273%) k=-3,-2,-1 j=34

a)fs) (x) = wf_)l(l —-Xx),

w2 () = 0, (1 - x)
wi‘? (x) = wf_)g(l - X)

0@ =0l (1-27%), k=23,

Inner scaling:
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[ 236 43 0 <x<-=
3 8
3 2 2 1 2
—256x° — 128x —16x+§ 5Sx<§
0 (x) =3 256x3 — 256x2 + 80x — = Z<x<i
’ 3 8 8
324 _ 3 3 1
2 (1-2x) 5 Sx <3
\ 0 Otherwise
/ %(Sx—l)3 %Sx<§
—256x3 + 224x% — 60x + 37‘1 g <x< g
w® () =< 256x3 — 352x2 + 156x — =+ Pcx<t
41 6 8 2
le_g,3 1 5
-(5—8x) S <x<g
\ 0 Otherwise
4 —1)3 2 3
;(4x—1) S <x <y
—256x3 + 320x2 — 128x + 53—" S <x<y
@)y — 3 448x2 _ 12 1 5
Wy, (x) = < 256x” — 448x" + 256x — — S Sx<g
lToe 3 5 3
- (6 —8x) S Sx<;
0 Otherwise
\
1 —2)3 3 1
[ P (8x — 3) 5 Sx <3
—256x3 + 416x2 — 220x + % % <x< g
w3 (x) = < 256x3 — 544x2 + 380x — 2= 2ox<?
y 6 8 4
19 _ 3 3 7
- (7—8x) L Sx<g
\ 0 Otherwise
1 — )3 1 s
[ ~(8x —4) ~ <x<g
—256x3 + 416x2 — 220x + % g <x< %
w0 (x) =< 256x3 — 544x2 + 380x — 2= Pax<l
y 6 4 8
1(7 - 8x)3 IT<x<1
6 8 —
\ 0 Otherwise
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0D = w2732 —k), k=01,.....2 =4 j=34.. ..
124 1677 90
Pu(x) = a)4(2x) + FO)“(ZX -1+ T w,(2x —2) + 3l w,(2x — 3)
18482 24264 18482
+ T w,(2x —4) — T w,(2x —5) + w4 (2x — 6)
7904 1677 124
T w,(2x —7) tr wy (2x — )—7 wy(2x —9)

1
+ al w,(2x — 10)

Cubic B-spline wavelet ,(x) is shown in Fig.3. The system's inner and border wavelet
analysis is obtained through the application of [8, 11].
4. Functional Approximation

A function f (x) specified in the interval [0,1] can be rendered in the cubic B-spline scale
field FJ,

For any fixed positive integer J, as

2Jo-1 Jo 2l-4
800 = ) Gueg '@+ ) ) du ) = TV 9
i=-3 i=3 k=-3

Where (p(]O) and ‘P(‘)are wavelet and scaling functions should eq (9)'s infinite series be

shortened, respectively. And for j=3, it can be expressed as follows:

8(x) = Yo 5 ¢ 100 (x) + X0 324 dy W () = €T (%) (10)
Where C and ¥ (x) are (2/0*1 + 5)x1 vectors given bye
C="[c_3,...., C7,d3,-3,.... d3a..... djo-3 diyi_y ,]-T ! (11)
W=l 0D D P ) T (12)
With
f f(x)<p(3)(x) dx,...i=-3,....7. (13)
diy = f FOOYL () dx, ...j =3, Jo.k = =3....200 — 4, (14)

Where <p(3) and wf,z have dual purposes. of gofl)i =-3, ... 7 and lpf,z =j=3,..J
According to. By using linear combinations, these can be obtained. Of

3
goil) and ll’(])

¢ =[0s2s (P2 @) e 02,0 17 (15)
Y =[P (0) . T (1) e WL (01T (16)

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

e

70



https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Al-Sharea MJA. / Al-Kitab Journal for Pure Sciences (2025); 9(2):62-83.
e —

Using(9)-(13),(15,16) We obtain
1

[owereodax =1, (17)
0
1 7 31 1
— — 0 0 0 0 0 0
56 640 13440 566720
L —31 i —29 ! 0 0 0 0 0 0
640 1120 256 6720 26880
31 5 183 283 239 1
—_— — 0 0 0 0 0
13440 256 4480 10080 80640 40320
1 29 283 151 397 2 1 0 0 0 0
6720 6720 10080 2520 13440 672 40320
0 1 239 397 151 397 2 1 0 0 0
26880 80640 13440 2520 13440 672 40320
0 0 1 2 397 151 397 2 1 0 0
40320 672 13440 2520 13440 672 40320
0 0 0 1 2 397 151 283 29 1 0
40320 672 13440 2520 10080 6720 6720
0 0 0 0 1 2 397 151 283 29 1
40320 672 13440 2520 10080 6720 6720
0 0 0 0 0 1 239 283 183 i 31
40320 80640 10080 4480 256 13440
1 29 31 7
0 0 0 0 0 0 — i —_— —
26880 6720 256 1120 640
1 31 7
0 0 0 0 0 0 0 — — —
6720 13440 640 56
L is [11 x 11].
Assume ¢(x) serves dual functions. Of ¢(x) as presented in the Equation
N E)) 3 3 T
o =[ps_5 ,(x)‘P4.—2 () e 25 () ]

Using (8) (9) (11)
1
fqb(x)qu(x) dx = K11
0
where the identity matrix is [11 x 11]. Consequently, we obtain

W=¢ 1w (18)
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Theorem 3: Let e;(x) denote the approximate errors of f in (9) using cubic B-spline

scaling function within space Vj; therefore, || = Oe; (x) (27%).
Proof. By using (9) and (10). We get

oo 2i-4

ej(x) = Z Z L AAC))
i=) k=3

By putting
¢ = max{llpl(x)l; k=-3.... 2 — 4} We obtain
And

21—4 —al

@ 2
Z |di.klp4_k (x)| < aBCiT

k=-3
As a result,

1 O .
|ej(x)| < Zaﬁ Z ci2™*
i=)

The current inequality allows us to get
lej(x)| = 0(2™*) (19)
The order of error depends on the level j. as ()Jdemonstrates. The approximation error will
decrease with increasing degree of j.
5. Method of Solvation

This part outlines our primary approach, which combines the fixed point with the cub-spline
scale function. Next, we consider the method's convergence.

5.1 The New Numerical Method's Description: When considering the integral Eq. (5). To
streamline this procedure, assume that each value of t is confined to the interval where the
maximum level of B(t) is constant. assume t € [0, a] without losing generality. Allow me to

0=ty <t;<tnp=a,

By G locations in [0, a].

That are evenly separated. By the proof, K is a continuous operator on (Br) and had a fix-
point x in the Br—theorem 2. Eq. (1) has at least one solution in Br under the assumptions 1—
4. Additionally, evenly locally appealing solutions for problems (1). This section provides a
concise overview of the evidence required in the subsequent sections. For additional
information, please refer to [6].

Initially, parameter G was defined by the creators in [6]. in a way that ensures that for any

X € Br,
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B(©)
x(8) = (KO = f - (tx(a(t)) f t”(y<s>))ds) ,

Now, we treat operator H using the fix-point approach. for x, (t) € Br as well as Points
tri=1,.......... ,G)

X1 (t) = (H) (&) = <t xe(a(®)), f tus xk(V(S))) ds) K=01,. (20)

The integral is to be approximated. Numerically inside the intervals [0, B(t;)] in (21) and
xn+1(t), we apply A Simpson rule that is composite and applies to equally distant L points.
Today, we utilize cub-spline scaling methods as the foundation for our estimations. x4 (t) to
get ready for the following iteration. x,,,(t)We can immediately calculate using the
coefficients of the scaling functions (5)—(14) from the previous section without having to solve

any systems of algebraic equations as

= [ e Q@ O dt ] = =3,...7
where, as previously stated
(@250, @ (O, e @y O] = P75 (), e 0 (O]
Given the values of xk+1(ti) (i = 1,..., H), we compute cj. By employing the composite Simpson

rule, we arrive at the following;

% (0) = 256,07 (©) (21)

We repeat the iterations until the difference between subsequent iterations, x;(t), is as
small as we need for the appropriate level of precision. The end values of x;,,(t) correspond
to an operator's M fixed point k at that level of precision. Consequently, we make an
approximation of Equation (5). The following briefly describes the numerical approach.

5.2 There is a Relationship Between Teachers K and G: The teacher k represents the
number of iterations within the fixed-point method, while G, according to the assumptions of
Theory (2), are distant and central points within the interval [0. a]. Through the practical
application of numerical examples, we continue with the iterations until we achieve a small
difference between consecutive iterations. These small differences are essential for achieving
high accuracy, ensuring that the terminal parameters Xx(t) converge to a stationary point for
operator Z. Therefore, we are approaching an accurate solution to the Eq. (5). We observe the
accuracy of the method used through the numerical examples in examples [7] and [8],
comparing them with the methods used in previous studies. We notice that an increase in k and
G leads to an increase in accuracy and a decrease in the absolute error rate. The iterations keep

increasing until the approximate solutions get closer to the exact solutions.
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6- Results:

This article illustrates the method's accuracy by presenting numerical illustrations for the
integral equation eq(5). We utilized the symbol k to represent the number of iterations in the
fixed-point method. And K to Represent the approximate value x(t) in the iteration X(t), which
is based. On this, we can calculate the absolute error ratio to x(t) in iteration k as follows: is
represented with xt;

(X (1)) — xg4+1 (D]
Hence, it is possible to determine the most significant (absolute error in iteration K as an
llx — x|l = max|x(ty — xgty)
Furthermore, one can compute the discrepancy located between the approximate at K and
K+1 as
| %41 (8) = xiety .
As a result, we acquire
llx — xiell = max|xgq(8) — xK(ti)l

We used different values of k and G to solve the following numerical examples. In these
examples, we applied the formulas in the articles above (17) and (18) to derive approximate
numerical solutions. The calculations and results were carried out using Mathematics 8.

Example (1) : non-linear Fredholm—Hammerstein equation that follows
1

x(t) = sin (g t) —2te”tn(3) + e‘tf

0

4ts + mtsin(ms)
. S,
x(s)?+s2+1

Table 1: Absolute errors for Example 1 across various values of K.

t k=2 k=5 k=10
0 0 0
0.1 | 0.127890 x 10~* | 0.953012 x 10~ | 0.362567 x 10~°
0.2 | 0.214093x 10~* | 0.167951x 10~* | 0.119137 x 1078
0.3 | 0.227909x 10~ | 0.197670x 10~* | 0.139588% 10~7
0.4 | 0.169766x 10~* | 0.149812x 10~* | 0.402300x 10~7
0.5 | 0.797177x 1072 | 0.497886x 10~* | 0.934621x 10~
0.6 | 0.384727x 10~* | 0.334333x 1075 | 0.378213%x 1077
0.7 | 0.472688x 10”2 | 0.660849x 1075 | 0.269398% 10~
0.8 | 0.631157x 1072 | 0.612657x 10~° | 0.301620x 1077
0.9 | 0.572703x 1072 | 0.453392x 10~5 | 0.464820x 10~7
1 | 0.410323x 102 | 0.290023x 1075 | 0.301723x 10~

Possesses an exclusive, precise resolution

. x(t) = sin (g t). Functional, the value of B(t) is 1, and y(t) is equal to t.

s
f(t,x,y) = sin (E t) —2te tIin(3) + ety
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And

4ts + mtsin(ms)

u(t,s,x
( ) x2+s2+1

1]

Are continuous functions that meet Theorem 2's presumptions. see
¢(t) Equal t, k Equals 0, m(t) = e”(-t), where D = 1.24575

1M—°. — 3.82984.

We make a decision x,(t) = sin G t) — 2te”YIn(3) € [-r,r],wherer =

Table 1 displays the absolute values of defects for (G = 200 and L = 200) mesh points. The
errors associated with a single iteration are represented by absolute values in Table 2. for varied
numbers of mesh points. Furthermore, errors are diminished by conducting additional
iterations. Refer to Figure 1. Where the [ 10g10(||x; — x||) = logl10 (max |x;(t;) — x(¢;)|), to t;
=1i/10 forany (i=0, 1......

Example (2): Examine the subsequent information. Kind (42, 43) of non-linear function

integral equation of the Volterra.

t
1+ t?

sx(s)
1+ x|

¢
x(t) = x(t)+ | et
|

Table 2: Absolute Errors within the EX.1 K Equal 10, L Equal 200, many G variables

t G=50 G=100 G=200
0 0 0 0
0.1 | 0.170303x 10> | 0.449863x 10~° | 0.362567 x 10~°
0.2 | 0.307753x 10> | 0.805820x 10~° | 0.119137 x 10°8
0.3 | 0.409215x 1073 | 0.104431x 10~* 0.139588x 1077
0.4 | 0.478569x 107> | 0.117460x 10~* 0.402300x 1077
0.5 | 0.521326x 10~* | 0.121565% 10™* 0.934621x 1077
0.6 | 0.540250x 10~* | 0.1200099x 10~* | 0.378213x 1077
0.7 | 0.548649x 10~* | 0.116624x 10™* 0.269398x 10~
0.8 | 0.547760x 10~* | 0.110637x 10™* 0.301620x 10~
0.9 | 0.542085x 10~* | 0.105845x 10™* 0.464820x 10~
1 0.532832x 10~* | 0.101492x 10™* 0.301723x 10~
0r
af
i
? .
8 |
R -4
¥ i
-st
4
2
o

Figure 1: Ex(1) Illustrates the Logarithm of t the Utmost Error Occurring During Every Iteration.
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Which has a unique, precise solution. The value of x(t) is zero. The formulas are: a(t) =
B(t) = y(t) = t: We can ascertain t by employing fundamental mathematics. the solution to

which is unique and exact x(t) = 0. The functions a(t), B(t), and y(t) are all defined as t.

(t ) tx +
fits,x 1+
And
sx
t,s,x)=e"
u(t,s,x) =e T+ 1]

Satisfying the requirements of the second theorem with ¢(t) Equal t, k Equal 1/2, m(t) Equal

1, and D = 0.270671, The procedure is implemented. where x_0(t) Equal 0.5 € Br, where r =

1.08268. Table 3 displays the exact error values, while Figure 2 depicts the logarithm of the

highest error associated with iterations, especially for G equals 80 and L equals 50 mesh points.

Example (3): We investigate the non-linear Volterra functional integral problem using

proportional delay.

1+t2

e_msz(%)—e‘1 . t/2 sin(ZS)e‘xz(S)
BT + sin fo _— ,

x(t)=cos(t)- sin <

Table3: Fundamental errors for Example 2 over several levels of K

t k=5 k=25 k=50
0 0 0 0
0.1 | 0.462407 x 10~° 0.808969x 10713 0.306027x 1072
0.2 | 0.131506 x 1073 | 0.268324 x 10712 | 0.107748 x 10~1°
0.3 | 0.790865 x 1073 0.275392x 1012 0.171832x 1071°
0.4 | 0.243661 x 1072 0.300346x 1012 0.114517x 1071
0.5 | 0.512032 x 1072 0.649454x 1010 0.156528x 1018
0.6 | 0.0.835707x 102 0.635856x 10~° 0.148931x 10~
0.7 | 0.114419x 10°* 0.316263x 108 0.185272x 10716
0.8 | 0.138099x 1071 0.802217x 10~8 0.131274x 10715
0.9 | 0.151984x 1071 0.129801x 10~7 0.334904x 10~1°
1 0.156251x 1071 0.149012x 1077 0.439281x 10715
0y
-2 .....
e,
%,
-4 L
®e
g -6 ....
= %o
—é: =8 ....
% ®e
3 i "o.
L
°
-12 ’...
e
-14 ...
%oy
0 10 20 30 40 50
N

Figure 2: The logarithm of the highest error associated with every iteration in Example 2.
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Which possesses the precise solutions x(t) = cos(t). The functions such as B(t) =t - (1 - g)t for

g = 1/2 and y(t) Equal t can be readily demonstrated to be continuous. Additionally, a(t) may be

Any continuous operation that satisfies Condition 1.

1

—cos%(3) _ o1
_ - e 2°—e .
f(t,x,y)=cos(t) - sin <T> + sin (y)

And -*%sin (2x)>

_ - e
u(t,s,x)=cos(t)- sin ( e

Meet the conditions of Theorem 2, given k =0, m(t) = 1, ¢(t) = t, with D ranging from 0.25. We
. ey- . e_cosz(%)—e_1
Derive r = 1.5 and utilize x,(t)= cos(t)- sin —] = € Br

The preliminary function. Both Table 4 and the following figure illustrate the absolute errors

with the logarithm of the highest Iteration-related absolute errors for L = 100 and G = 200 centered

within the range [0,2].

Table 4: Approximate Errors for the Third Example for Various Values of K

t k=2 k=5

0 0 0

0.2 | 0.234328 x 1077 | 0.239081x 1077
0.4 | 0.146720 x 10”7 | 0.360304 x 1077
0.6 | 0.323011 x 107® | 0.914190x 1077
0.8 | 0.863026 x 107° | 0.637923x 10~°
1 0.205252 x 1075 | 0.284243x 10~°
1.2 | 0.539092x 10~> | 0.878520x 10~
14 | 0.113864x 10~* | 0.593672x 10~
1.6 | 0.154702x 10~* | 0.506919x 10~
1.8 | 0.252727x 10~* | 0.231660x 10~
2 0.852385x 1077 | 0.116951x 1078

-3t

Log,q(lsy )

= 15

s B
5

Figure 3. Logarithm of the greatest error associated with each repetition in Example (3).
Example (4): The subsequent non-linear integral Equation for Volterra function

3
8 22
_”(;\/7 2e A\(\/_)_) ds|

2
3 =2
A (3/s2)

X ()= eV —

(1 +e"Vx(1)) ( 2 )
2(1+1% 1+)°
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Contains a precise solution. The value of x(t) is equal to e. The functions to use are a(t) =t,
B(t) =t, and y(t) Equal 3.
Comply with the first condition of Theorem 2. Furthermore, functions as well

. o e ,2(1 _+_(,7I I.\) 12 i
t, %X, = - -
f,x,y)=e 20519 + 5
2e tx
And u(t,s, x) = Tix?

Fulfilled the criteria of Theorem 2—4 using n = 0.111641, ¢(t) Equal t, G(t) = t*/(1+t*), D =
0.5, and M,, = 2. Thus, we have r = 2.25134 and choose x,(t) € Br. The extent of errors

Table 5: Absolute Errors of Example 4fore x,(t) =0.5and Different Value of K

t K=2 K=5 K=10

0 0 0 0

0.1 | 0.116062 x 10~* | 0.302756 x 10~° | 0.302763 x 10~°
0.2 | 0.150179x 103 | 0.164254x 10~® | 0.163322 x 10~°
0.3 | 0.597392x 1073 | 0.518220x 10~° | 0.551065x 10~
0.4 | 0.139726x 10~2 | 0.963558x 107° | 0.626378x 10~
0.5 | 0.237648x 1072 | 0.135418x 10> | 0.213892x 10~°
0.6 | 0.319742x 102 | 0.444057x 10~> | 0.933230x 1077
0.7 | 0.356863x 10~2 | 0.811830x 10~> | 0.411882x 1077
0.8 | 0.342076x 1072 | 0.110323x 10~* | 0.286523x 10
0.9 | 0.291232x 1072 | 0.133351x 10™* | 0.152142x 10~
1 0.22864x 1072 0.136016x 10™* | 0.216699x 10~®

Table 6:Absolute errors of Example 4for K=5 and different values of x,(t)

t X0()=0.5 x(t) =1 xo()=2
0 0 0 0
0.1 | 0.302756 x 107° | 0.302762 x 10~° | 0.302777 x 10~°
0.2 | 0.164254x 10~® | 0.163079%x 10~° | 0.161031 x 10~°
0.3 | 0.518220x 10~® | 0.562475x 10~° | 0.637346x 10~°
0.4 | 0.963558x 107° | 0.420642x 10~° | 0.419744x 10~°
0.5 | 0.135418x 10~> | 0.165281x 10~° | 0.595858x 10>
0.6 | 0.444057x 10~> | 0.553731x 1075 | 0.188352x 10~*
0.7 | 0.811830x 10~> | 0.140381x 10~* | 0.417234x 10~*
0.8 | 0.110323x 10~* | 0.251467x 10~* | 0.680604x 10~*
0.9 | 0.133351x 10~* | 0.133351x 10~* | 0.880009x 10~*
1 | 0.136016x 10~* | 0.397919x 10~* | 0.991856x 10~*

Table 5 provides details of the iterations, which correspond to G = 150 and L = 100 mesh
points. Table 6 displays the maximum inaccuracy values for a single iteration according to
various initial locations and a consistent number of mesh points. Figure 4 illustrates how
increasing the number of repetitions reduces mistakes.

Example (5): Examine the integral Equation shown below [10].

in(hx (3T Vi 1 40,2
x(h) = sinrx (Vi) + arctan (J Ltsx?(t)+ hs'l (A +x7(x ))> ds.
o

14+h? (1+hn7) (1+x*(x?2))

P,
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

—

78



https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Al-Sharea MJA. / Al-Kitab Journal for Pure Sciences (2025); 9(2):62-83.

Using basic math, we can determine that
o (h) = V&, B(h) = YR y(t)= 1

in(hx (¥R
x(h) = w, +arctan(y)

And

V1 +5x2(s2) + tst (1 + x*)
A+ )+ 15

u(t.s,x) =

Fulfill the requirements of Theory 2 accompanied by { D = 1.0184, k = 0.5, m(t) = 1, and
o(t) =h.} Asaresult, we determine that the beginning function belongs to the ball Br and get(
r = 4.07362.) In contrast, since f (t, x, 0) is a function restricted in its range, Corollary 1's
requirement are met. As a result, there is at least one solution to the integral Equation, and These
solutions possess universal appeal. Upon completing 50 cycles, we ascertain the mistake for (L = 50
and G is equal to 80) mesh points.||xy.1— xy|| = maxi |xy4q () — x5 (t)] = 2.37155 x 108,
where h_i =i/10 where i =0, 1, ..., 10. In the figure, the response is an approximation obtained
after 50 iterations. as demonstrated by the explanation that follows x(t) is an element of Br

Example (6): Examine: Kindly assess the presented non-linear Fredholm integral. [44,45]

x(t) =1+te— fol(t + 8)eX®) ds.

i L 4 : .
02 04 0.6 08 1.0

Figure 4: Approximation Solution of Example 5 after 50 Iteration

The precise solution is x(t) = t. This section addresses the solution of the integral Equation
utilizing our suggested method and juxtaposes prior results with the new findings delineated
in Table 7 for K =30, G =200, and L = 200.

Example (7): The following integral Equation

x(t) = sin(t)* +1— JtB sin(t —s)x (s)?ds
0
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Table 7:As shown in Figure 3, the absolute errors are as follows: K=30, G=200, and D=200.

t | Methodology | Methodology | Methodologically presented
of[44] [45]
0 2x1073 2.58 x 107° 8.96539 x 10710
0.2 1x 1072 7.35 x 107 7.99324 x 107°
0.4 2x 1072 7.93 x 107° 423015 x 10~ 8
0.6 1x 1072 2.55 x 107° 8.28779 x 107°
0.8 0x1073 3.98 x 107° 2.82284 x 1077
1 1x 1072 2.64 x 107° 5.62541 x 1078

Table 8:Contains The Solutions to Example 7: K =10, G = 250, And D = 200, With Both Exact And
Approximate Values

t Methodology | Methodology | Methodologically presented | PERFECT RESOLUTION
of[44] 0f[45]
0 1.0000 1.00000 1.000000000 1.000000000
0.1 0.9952 0.99500 0.995004165 0.995004165
0.2 0.9800 0.98006 0.980066580 0.980066577
0.3 0.9554 0.95533 0.955336485 0.955336489
0.4 0.9210 0.92105 0.921060993 0.921060994
0.5 0.8775 0.87756 0.877582565 0.877582561
0.6 0.8255 0.82531 0.825335614 0.825335614
0.7 0.7648 0.76482 0.764842185 0.764842187
0.8 0.6969 0.69669 0.696706707 0.696706709
0.9 0.6217 0.62159 0.621609968 0.621609968
1 0.5405 0.54028 0.540302303 0.540302305

The exact answer is x(t) Equal cos(t). This Equation fails to satisfy the following criteria: to theory
2, we employ the technique described in this article. Furthermore, the findings of our
investigation have been compared with the results [46,47] Table 8.
7. Conclusion

In this research paper, we applied fixed-point technique with cubic B-Spline scaling function
to obtain a numerical solution for a set of non-linear integral equations without the need for
algebraic systems. Using the numerical examples and the obtained results, as well as equation
number (5), we found that the results are highly accurate and closely approximate the exact
solution. We compared these results with those obtained from previous studies and observed
the accuracy of this method. Since the accuracy of this method depends on using larger values
for G and K, we note that the accuracy will improve with larger values. We continue the
iterations until we reach a precise solution that approaches the true solution. This method is free
from scenarios, problems, or excessive computational costs, and it is applicable to equations
with larger and more complex dimensions. This method has no adverse effects on more

complex equations.
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