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Abstract: 

This article introduces a new notation for expressing extremely large numbers, based on the 

hyperoperation concept in group theory. The method employs a finite sequence of positive 

integers separated by specific notational symbols, allowing for concise representation through 

an arrow-free notation: (𝑎𝑛
𝑏), where b represents the number of copies of a, and n denotes the 

arrow’s number described by a general formula. This recursive definition aims to replace the 

Knuth up-arrow notation and Conway chained arrow notation, which require the insertion of 

arrows between or within numbers. The new approach simplifies these expressions, eliminating 

the need for such symbols and providing a straightforward and concise method for representing 

large numbers. The aim was to develop a more efficient method, arrow-free notation, reducing 

the complexity and steps necessary with previous notations.  

Keywords: Number Theory, Knuth Up-Arrow Notation, Conway Chained Arrow 

Notation, Hyperoperation.  

  

 

 

https://doi.org/10.32441/kjps.09.02.p4
https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
https://isnra.net/index.php/kjps
mailto:laithhady@utq.edu.iq
mailto:laithhady@utq.edu.iq
mailto:hardmanquanny@gmail.com
https://doi.org/10.32441/kjps.09.02.p4
http://creativecommons.org/licenses/by/4.0/


Al-Ossmi LHM. / Al-Kitab Journal for Pure Sciences (2025); 9(2):43-61.

 

 

Web Site: https://isnra.net/index.php/kjps   E. mail: kjps@uoalkitab.edu.iq

 
44 

 

تمثيل الأعداد الكبيرة: الترميز الخالي من الأسهمنظرية الأرقام لنهج جديد في   

  هادي منشد العصاميليث 

 كلية الهندسة/ جامعة ذي قار/ محافظة ذي قار/ العراق  

laithhady@utq.edu.iq,  hardmanquanny@gmail.com 

9478-6145-0002-https://orcid.org/0000 

 :الخلاصة

يتناول هذا المقال ترميزًا جديداً يتعلق بمفهوم العمليات الفائقة في نظرية الزمر. يتعامل مع طرق التعبير عن بعض الأعداد 

هو عدد  b الكبيرة جداً. هو ببساطة تسلسل محدود من الأعداد الصحيحة الموجبة مفصولة بترميز خالٍ من الأسهم حيث يكون

العامة؛ n ، و a   نسخ 𝑎𝑛) هو عدد الأسهم، والذي يوصف بالصيغة 
𝑏) الترميزات الحال مع معظم  فإن   كما هو  التوافقية، 

التعريف تكراري. في هذا المقال، ينتهي الترميز بأن يكون العدد الأيسر مرفوعًا إلى قوة عدد صحيح )عادة ما يكون ضخمًا(.  

 Knuth تم تصميم هذه الطريقة لتحل محل الطريقتين المستخدمتين سابقًا لتمثيل الأعداد الكبيرة، وهما ترميز السهم الصاعد لـ

يبسّط هذا النهج الجديد التعبير عن الأعداد الكبيرة دون الحاجة إلى كتابة الأسهم بين  Conway .لـوترميز السلسلة المتسلسلة  

الأعداد أو داخلها، كما كان مطلوبًا في الطرق السابقة. كان هدف هذا البحث هو تحقيق هذه الميزة بهذه الطريقة المبتكرة،  

، مما يوفر طريقة أكثر بساطة ووضوحًا لتمثيل نفس  التي تبسط عدة خطوات كانت مطلوبة سابقًا من الطريقتين الأخريين

الحالات. الطريقة بسيطة وواضحة مع خطوات قليلة، مما يجعل من السهل تعلمها وتطبيقها لمعالجة مختلف حالات الأعداد 

 .الكبيرة والكبيرة جداً

ال،  الأعدادنظرية    المفتاحية:الكلمات   السهم  لـمتترميز  لـأسهم  ، ترميز  Knuth صاعد  العمليات  Conway السلسلة   ،

 العددية. 

 

1. Introduction : 

The notation 𝑥^𝑦 for tetration, introduced by Hans Maurer in 1901, has evolved significantly 

over the years [1]. In 1947, Reuben Louis Goodstein coined the term tetration and named other 

hyper-operations [2]. Andrzej Grzegorczyk further advanced this field in 1953, leading to the 

sequence of hyper-operations sometimes being referred to as the Grzegorczyk hierarchy [2,3]. 

Rudy Rucker's 1995 publication, Infinity and the Mind, popularized this notation extensively 

[4], despite his credit sometimes being mistakenly attributed to its first use. In 1976, Donald E. 

Knuth developed the Up-arrow notation for hyper-operations [4], which has found significant 

success on the internet due to its convenience in representing tetration as "𝑥^^𝑦”. More 

recently, in 1996, John Horton Conway and Richard K. Guy introduced another hyper-operation 

notation in their book The Book of Numbers [2,3]. Large numbers, which significantly exceed 

those typically encountered in everyday life, such as in simple counting or monetary 

transactions, are frequently found in fields like mathematics, cosmology, cryptography, and 
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statistical mechanics. In 2002, Jonathan Bowers developed Array Notation, which extends 

beyond hyperoperations while still encompassing them [3]. Bowers' notation includes an infix 

notation known as extended operator notation, equivalent in all respects to the current de facto 

standard notation for hyperoperations [4,5]. 

In mathematics, large numbers, defined as numbers exceeding one million, are typically 

represented either using exponents, such as (10^9, or 109), or by terms like billion or thousand 

million, which vary across different numeration systems. The American system of numeration 

for denominations above one million was originally based on a French system. However, in 

1948, the French system was modified to align with the German and British systems [6,7]. In 

the American system, each denomination above one thousand million (the American billion) is 

1,000 times the preceding one (for example, one trillion equals 1,000 billion; one quadrillion 

equals 1,000 trillions). Conversely, in the British system, each denomination is 1,000,000 times 

the preceding one (for example, one trillion equals 1,000,000 billion), with the exception of the 

term "milliard," which is sometimes used for one thousand million. In recent years, British 

usage has increasingly reflected the widespread adoption of the American system [8].   

Scientific notation was devised to handle the vast range of values that arise in scientific 

research. For example, 1.0 × 109 denotes one billion, or a 1 followed by nine zeros: 

1,000,000,000. Its reciprocal, 1.0 × 10−9, represents one billionth, or 0.000000001. Using 109 

instead of nine zeros alleviates the reader's effort and minimizes the risk of errors associated 

with counting a long series of zeros to determine the magnitude of the number [9]. In addition 

to scientific (powers of 10) notation, the following examples illustrate the systematic 

nomenclature of large numbers based on the short scale. The Avogadro constant [10], for 

example, is the number of “elementary entities” (usually atoms or molecules) in one mole; the 

number of atoms in 12 grams of carbon-12 is approximately 6.022 × 1023, or 602.2 sextillion. 

The lower bound on the game-tree complexity of chess, also known as the “Shannon number” 

(estimated at around 10120), or 1 novemtrigintillion.  Rayo's number, named after Agustín 

Rayo, is a large number that has been claimed to be the largest named number [11]. At MIT on 

January 26, it was first defined during a "big number duel", 2007[12]. Graham's number, which 

surpasses what can be represented using power towers (tetration), can nonetheless be expressed 

using layers of Knuth's up-arrow notation. Nevertheless, there are very specific methods used 

to write out such huge numbers. Gödel numbers, as well as similar huge numbers used to 

represent bit-strings in algorithmic information theory, are extraordinarily large, even for 

mathematical statements of moderate length. One of the earliest mentions of hyperoperations 

was by Albert Bennett in 1914, where he developed a portion of his theory on commutative 
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hyperoperations [11,12]. Twelve years later, Wilhelm Ackermann defined a function, denoted 

as (𝜙), which resembled a sequence of hyperoperations. In a 1947 paper, the Greek 

mathematician Ruben Goodstein introduced a sequence of operations now known as 

hyperoperations [12]. He extended these operations beyond exponentiation by adding the 

subsequent steps, which he suggested be called tetration and pentation. As a function with three 

arguments, this is recognized as a variant of the original Ackermann function. Nevertheless, 

some pathological numbers surpass the magnitude of Gödel numbers associated with typical 

mathematical propositions [10,11]. In general, there are very specific methods used to write out 

such extremely large numbers, such as: 

• Scientific Notation: A way of expressing numbers as a product of a coefficient and a 

power of 10[11]. For example, 3.2 × 1015 represents 3,200,000,000,000,000. 

• Knuth's Up-Arrow Notation: A technique to represent exemplifying very large integers 

using arrows to denote iterated exponentiation [11]. For instance,  3 ↑↑ 3 is (33
3
), or 

(327), which is (7,625,597,484,987). 

• Conway's Chain Arrow Notation: An extension of up-arrow notation, useful for 

representing even larger numbers [12]. For example, 3 → 3 → 3 represents a very large 

number. 

• Steinhaus-Moser Notation: A way to represent very large numbers using polygons and 

the Ackermann function [13]. For example, 2 inside a triangle (∆2) is equivalent to 2^2 

or 4, but the notation can escalate quickly to represent vastly larger numbers. 

• Hyper-E notation: A notation for expressing extremely large numbers, using "E" to 

denote a level of exponentiation beyond standard operations [14]. For example, 3𝐸3    

represents (327). 

• Tree notation: Used in certain contexts like Kruskal's tree theorem [11,15], where 

numbers grow rapidly with tree structures and graph-related operations.  

A standardized method for writing very large numbers facilitates their easy sorting in 

ascending order and provides a clear understanding of how much larger one number is 

compared to another. These notations represent functions of integer variables that grow at an 

exceptionally rapid rate as the integer values increase. By applying these functions recursively 

with large integer arguments, it is possible to construct functions that grow even more quickly. 

However, functions characterized by vertical asymptotes are not appropriate for defining very 

large numbers, despite their rapid growth. This is due to the fact that such functions necessitate 

arguments approaching the asymptote, which involves working with extremely small values, 

such as reciprocals, rather than directly addressing the construction of large numbers. 

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq


Al-Ossmi LHM. / Al-Kitab Journal for Pure Sciences (2025); 9(2):43-61.

 

 

Web Site: https://isnra.net/index.php/kjps   E. mail: kjps@uoalkitab.edu.iq

 
47 

2. Materials and methods: 

In this paper, we introduce Al-Ossmi’s notation, a novel method for expressing extremely 

large numbers, named after its creator, Al-Ossmi. This notation aims to compactly represent 

large numbers by providing a clear structure that indicates the base, the level of iteration, and 

the depth of the operation. By doing so, it offers an efficient and unambiguous method for 

handling vast numerical values, making it a valuable tool for mathematicians and computer 

scientists. 

Al-Ossmi’s arrow-free notation is defined as; 𝑎𝑛
(𝒃 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝒂)

 
 , where: 

• a: The base number. 

• b: The number of iterations or the height of the power tower. 

• n: The level of operation or the number of arrows in Knuth's notation. 

Also, the arrow-free notation developed to be extended to deal with the pentation (iterated 

tetration), including more complex structures, representing additional levels of nested 

operations where d and c are variables, such as; 

𝑎𝑛 
𝑎𝑛 
(𝑎𝑛 
𝑎 )

 
,   𝑎𝑛 

(𝑎𝑛 

(𝑎𝑛 
(𝑎𝑛 
𝑎 )

)

)

 
 , or  𝑎𝑛

𝑏.𝑐.𝑑.𝑒.𝑓.𝑔

 
, 

Al-Ossmi’s arrow-free notation simplifies the representation of very large numbers by using 

a compact form that corresponds to (𝑎 ↑𝑛 𝑏) as in Knuth's up-arrow notation [15], and in 

Conway's chained arrow notation 𝑎 → 𝑏 → 𝑛 [11,16].  

3. Results: 

The method of writing and representing extremely large numbers is essential in mathematics, 

as it helps simplify and understand complex calculations and allows for the precise and concise 

expression of enormous quantities. Using specific symbols and notations to represent these 

numbers facilitates their handling in various mathematical fields, enhancing the efficiency of 

computations and analyses. These methods provide valuable tools for mathematicians and 

scientists who deal with numbers that exceed traditional representation capabilities. In our 

research, we will focus on the two most well-known methods, Knuth's up-arrow notation and 

Conway's chained arrow notation. 

 3.1 Knuth's up-arrow notation: This notation, introduced by Donald Knuth in 1976, is a 

system designed for representing very large integers [15,16]. It also illustrates the 

representation of numbers and the execution of arithmetic operations within this base system. 

Definition:  For all integers 𝑎, 𝑏, 𝑛 with 𝑎 ≥ 0, 𝑛 ≥ 1, 𝑏 ≥ 0, [𝟏𝟔],the up-arrow operators can 

be formally defined by: 
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𝑎 ↑𝑛 𝑏 = {

𝑎𝑏 ,                                                         𝑖𝑓 𝑛 = 1;                  
1,                                                          𝑖𝑓 𝑛 > 1 𝑎𝑛𝑑 𝑏 = 0;

𝑎 ↑(𝑛−1) 𝑏(𝑎 ↑𝑛 (𝑏 − 1)),                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 

This definition employs exponentiation as the base case and tetration as repeated 

exponentiation, aligning with the hyperoperation sequence but excluding the fundamental 

operations of succession, addition, and multiplication. The sequence begins with a unary 

operation (the successor function), for (𝑛 = 0) and progresses through binary operations such 

as addition (𝑛 = 1), multiplication (𝑛 = 2), exponentiation (𝑛 = 3), as well as tetration (𝑛 =

4), and pentation (𝑛 = 5), among others. This framework is often used to represent 

hyperoperations with arrows, for example;  

• The single arrow (↑) represents exponentiation (iterated multiplication); 

3 ↑ 2 = 3 × 3 = 32 = 9  

• The double arrow (↑↑) represents tetration (iterated exponentiation); 

3 ↑↑ 4 = 3 ↑ 3 ↑ (3 ↑ 3)  = 3 ↑ 3 ↑ (33) = 3 ↑ 3 ↑ (27)  

• The triple arrow (↑↑↑) represents pentation (iterated tetration); 

3 ↑↑↑ 4 = 3 ↑↑ 3 ↑↑ (3 ↑↑ 3)  = 3 ↑↑ 3 ↑↑ (3 ↑ 3 ↑ 3) = 3 ↑↑ 3 ↑↑ (33
3
)  

The up-arrow notation general definition is as follows (for 𝑎 ≥ 0, 𝑛 ≥ 1, 𝑏 ≥ 0): 

𝑎 ↑𝑛  𝑏 = 𝑎[𝑛 + 1 ]𝑏   

Here, ↑ stands for n arrows, so for example: 3 ↑↑↑↑ 5 = 3 ↑4 5 .  

Square brackets are another notation for hyperoperations. Exponentiation for a natural power 

𝑏 is defined as iterated multiplication, which Knuth denoted by a single up-arrow: 

𝑎 ↑ 𝑏 = 𝑎𝑏 , for example, 3 ↑ 4 = 3 × 3 × 3 × 3 = 34 = 81   

Tetration is well-defined as iterated exponentiation, which Knuth denoted by a “double arrow”: 

𝑎 ↑↑ 𝑏 = 𝑎 ↑ (𝑎 ↑  (… ↑ 𝑎)) ,   b copies of a’s. 

  Example;  3 ↑↑ 4 = 3 ↑ 3 ↑ (3 ↑ 3) = 3(3
33) = 3(7,625,597,484,987)   

Expressions are evaluated from right to left because the operators are right-associative. This 

results in very large numbers, but the hyperoperator sequence continues beyond pentation. 

Pentation, defined as iterated tetration, is represented by the “triple arrow”: 

𝑎 ↑↑↑ 𝑏 = 𝑎 ↑↑ (𝑎 ↑↑  (… ↑↑ 𝑎)) ,  hence b copies of a’s. 

Example,  3 ↑↑↑ 4 = 3 ↑↑ 3 ↑↑ (3 ↑↑ 3) = 3 ↑↑ 3 ↑↑ (3 ↑ 3 ↑ 3)    

 = 3 ↑↑ 3 ↑↑ (33
3
) = 3 ↑↑ 3 ↑↑ (7,625,597,484,987)      

Hexation, which is the iteration of pentation, is denoted using the “quadruple arrow” 

notation:   𝑎 ↑↑↑↑ 𝑏 = 𝑎 ↑↑↑ (𝑎 ↑↑↑  (. . ↑↑↑ 𝑎)) ,   b copies of a’s. 
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Example, 3 ↑↑↑↑ 4 = 3 ↑↑↑ 3 ↑↑↑ (3 ↑↑↑ 3) = 3 ↑↑↑ 3 ↑↑↑ (3 ↑↑ (3 ↑↑ 3))  , 

 = 3 ↑↑↑ 3 ↑↑↑ (3 ↑↑ (3 ↑ 3 ↑ 3))                                         

                     = 3 ↑↑↑ 3 ↑↑↑ (3 ↑↑ (7,625,597,484,987))        and so on.              

The general principle is that an n-arrow operator unfolds into a right-associative sequence 

of (𝑛 − 1)-arrow operators. For instance, expressing 𝑎 ↑↑ 𝑏 in traditional superscript notation 

results in a power tower. If 𝑏 is a variable or is exceptionally large, the power tower may be 

denoted with ellipses and an annotation specifying the height of the tower. 

𝑎 ↑↑ ⋯ ↑ 𝑏 = 𝑎 ↑ ⋯ ↑ (𝑎 ↑ ⋯ ↑ (… ↑ ⋯ ↑ 𝑎))   

n                   

Examples: 

𝟑 ↑↑↑ 𝟐 = 3 ↑↑ 3 = 3 ↑ 3 ↑ 3 = 33
3
=  7,625,597,484,987  

𝟑 ↑↑↑ 𝟑 = 3 ↑↑ (3 ↑↑ 3) = 3 ↑↑ (3 ↑ 3 ↑ 3), 𝑤𝑖𝑡ℎ;  3 ↑ 3 ↑ 3 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 3. 

Where; 3 ↑ 3 ↑ 3 = 33
3
=  7,625,597,484,987 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 3. 

𝟑 ↑↑↑↑ 𝟒 = 3 ↑↑↑ 3 ↑↑↑ (3 ↑↑↑ 3) = 3 ↑↑↑ 3 ↑↑↑ (3 ↑↑ (3 ↑↑ 3)) 

=  3 ↑↑↑ 3 ↑↑↑ (3 ↑↑ (3 ↑ 3 ↑ 3)) 

=  3 ↑↑↑ 3 ↑↑↑ (3 ↑↑ (33
3
))           

                        =  3 ↑↑↑ 3 ↑↑↑ (3 ↑↑ (7,625,597,484,987 ))     

 where; 3 ↑ 3 ↑ 3 = 33
3
=  7,625,597,484,987 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 3. 

In this notation system, the expression 𝑎 ↑↑ 𝑏 can be represented as a stack of power towers, 

where each level of the stack illustrates the magnitude of the level above it. If 𝑏  is a variable 

or excessively large, this stack may be denoted using ellipses with an annotation indicating its 

height. Similarly, 𝑎 ↑↑↑ 𝑏 can be represented by multiple columns of these power tower stacks, 

where each column represents the number of power towers in the stack to its left. This up-arrow 

notation simplifies the representation of these diagrams while maintaining a geometric 

framework, such as tetration towers. Although this notation can handle very large numbers, the 

hyperoperator sequence extends beyond this scope. For extremely large numbers, Knuth's 

multiple arrows become impractical. In such cases, the n-arrow operator (↑𝑛) is useful for 

describing sequences with a variable number of arrows, or hyperoperators. For numbers that 

surpass even this notation's capabilities, Conway's chained arrow notation can be employed. 

While a chain of three elements is comparable to other notations, a chain of four or more 

elements significantly enhances its capacity.  

https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq


Al-Ossmi LHM. / Al-Kitab Journal for Pure Sciences (2025); 9(2):43-61.

 

 

Web Site: https://isnra.net/index.php/kjps   E. mail: kjps@uoalkitab.edu.iq

 
50 

3.2 Conway chained-arrow notation: Similar to Knuth’s, the chained-arrow notation has 

several properties that are similar to exponentiation, as well as properties that are specific to 

the operation and are gained from exponentiation. Conway's chained-arrow notation, invented 

by mathematician John Horton Conway, is a method for representing extraordinarily large 

numbers  [12]. This notation involves a finite sequence of positive integers separated by 

rightward arrows, such as: 

2 → (3 → 4 → 5) → 6 . 

Like many combinatorial notations, Conway chained arrow notation is defined recursively. 

Eventually, the notation simplifies to the leftmost number being raised to a very large integer 

power. 

Definition1: A "Conway notation" is defined as follows: 

• Any positive integer can be represented as a chain of length 1. 

• A chain of length n, followed by a right-arrow → and a positive integer, together form 

a chain of length  (𝑛 + 1) .  

Any chain represents an integer, according to the six rules below [10]. Two chains are said 

to be equivalent if they represent the same integer. Let 𝑎, 𝑏, 𝑛 denote positive. Then: 

1. An empty chain (or a chain of length 0) is equal to  1. 

2. The chain  𝑎 represents the number 𝑎. 

3. The chain  (𝑎 → 𝑏) represents the number (𝑎𝑏). 

4. The chain (𝑎 → 𝑏 → 𝑛) represents the number  𝑎 ↑𝑛 𝑏  . 

𝑎 ↑↑ 𝑏 = 𝑎 → 𝑏 → 𝑛   
 

Examples can become quite intricate rapidly. Here are a few simple instances: 

22
2
= 2 ↑↑ 3 = 2 → 3 → 2   

4 ↑↑ 3 = 4 → 3 → 2   

5 ↑↑↑ 2 = 5 → 2 → 3   

Arrow chains do not represent the iterative application of a binary operator. Instead, chains 

of other infixed symbols (𝑎 ↑𝑛 𝑏) can frequently be considered in fragments (𝑎 → 𝑏 → 𝑛 )) 

without a change, for example: 

23
2
= 29 = 2 → (3 → 2)   

(23)2
  
= 82 = (2 → 3) → 2   

 

2 ↑↑↑ 4 = 2 ↑↑ 2 ↑↑ (2 ↑↑ 2) = 2 ↑↑ 2 ↑↑ (2 ↑ 2) = 𝒂 → 𝒃 → 𝒏 = 𝟐 → 𝟒 → 𝟑  

The sixth rule in Conway's chained-arrow notation is essential. It dictates that for a sequence 

with four or more elements, ending in a number 2 or higher, the sequence is transformed into 

one of the same lengths but with a significantly larger penultimate element [12]. The last 
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element of the sequence is reduced, which simplifies the sequence according to Knuth's detailed 

procedure. This reduction process continues until the sequence is condensed to three elements, 

where the fourth rule completes the recursion. 

4. The Arrow-Free Notation  

The need for new arithmetic operations on very large numbers arises from various practical 

and theoretical considerations in fields such as science, technology, and mathematics. In this 

paper, we introduce a modern approach with an arrow-free notation that allows for the 

representation of numbers so large they are beyond common human experience. Al-Ossmi’s 

arrow-free notation, named after its inventor, represents a function of integer variables that 

escalate at an exceptionally rapid rate as these integers increase. This notation allows for the 

recursive construction of increasingly faster-growing functions by applying it with large integer 

arguments. 

Definition 2: For all non-negative integers 𝑎, 𝑏, 𝑛 with 𝑎 ≥ 0, 𝑛 ≥ 1, 𝑏 ≥ 0, the Al-Ossmi’s 

arrow-free operators can be formally defined by: 

𝒂𝒏
𝒃 =

{
 

 
𝑎𝑏 ,                                        𝑖𝑓 𝑛 = 1                                
1,                                          𝑖𝑓 𝑛 > 1 𝑎𝑛𝑑 𝑏 = 0;          
 𝑎,                                         𝑖𝑓 𝑛 > 1 𝑎𝑛𝑑 𝑏 = 1;           

𝑎(𝑛−1)
  (𝑎𝑛(𝑏 − 1)),            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

 

It is important to note that Knuth did not define the "nil-arrow" operator 𝑎 ↑0 , whereas Al-

Ossmi’s notation does include this concept. Furthermore, Al-Ossmi’s notation can be extended 

to negative indices (𝑛 ≥ −2) to align with the entire hyperoperation sequence, albeit with a 

delay in the indexing, which can be formed as: 

𝒂 ↑(𝑛−1) 𝑏 = 𝒂(𝑛−1)
𝑏   ,    𝑓𝑜𝑟 (𝑛 ≥ 0) 

For (𝑛 = 1),we obtain the ordinary exponentiation, hence this definition uses 

exponentiation; 𝒂𝟏
𝒃 = 𝒂𝒃 

 
 ,as the base case, and tetration; 𝒂𝟐

𝒃 as repeated exponentiation. This 

approach aligns with the hyperoperation sequence but excludes the three fundamental 

operations of succession, addition, and multiplication. Alternatively, one may choose to define 

multiplication as follows: 

𝑎 ↑1 1 = 𝑎1 =   𝒂𝟏
𝟏 = 𝑎   

 

𝑎 ↑1 𝑏 = 𝑎𝑏 =   𝒂𝟏
𝒃 = 𝑎𝑏   

𝑎 ↑0 𝑏 = 𝑎 × 𝑏 =   𝒂𝟎
𝒃 =  𝑎. 𝑏    

The up-arrow operation is right-associative, meaning that is, 𝑎 ↑ 𝑏 ↑ 𝑐 , is understood to be, 

𝑎 ↑ (𝑏 ↑ 𝑐) , instead of, (𝑎 ↑ 𝑏) ↑ 𝑐 , while it is donated by Al-Ossmi’s arrow-free notation as:  
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𝑎
(𝑏

(𝑐𝑑)
)
= 𝑎 ↑ (𝑏 ↑ 𝑐 ↑ 𝑑) = 𝑎 ↑ (𝑏. 𝑐. 𝑑) = 𝒂(𝒃.𝒄.𝒅 )  

𝑎 ↑ 𝑏 ↑ 𝑐 = 𝑎 ↑ (𝑏 ↑ 𝑐)  = 𝒂1
(𝑏↑𝑐) = 𝒂1

(𝑏.𝑐 )
 = 𝒂(𝑏.𝑐 ) 

 
   

 𝑎 ↑↑ 𝑏 ↑ 𝑐 = 𝑎 ↑↑ (𝑏 ↑ 𝑐)  = 𝒂𝟐
(𝑏↑𝑐)  =   𝒂2

(𝑏.𝑐 )
   

𝑎 ↑↑↑ 𝑏 ↑ 𝑐 = 𝑎 ↑↑↑ (𝑏 ↑ 𝑐)  = 𝒂𝟑
(𝑏↑𝑐)  =   𝒂3

(𝑏.𝑐 )
   

Then exponentiation becomes repeated multiplication, 𝑎 ↑ 𝑏 ↑ 𝑐 ↑ 𝑑 in form of (𝑎. 𝑏. 𝑐. 𝑑), 

which means; 𝑎
(𝑏

(𝑐𝑑)
)
. The formal definition would be donated by Al-Ossmi’s arrow-free 

notation as iterated exponentiation of a power tower of b:  

  𝑎 ↑ 𝑏 ↑ 𝑐 ↑ 𝑑 = 𝑎 ↑ (𝑏 ↑ 𝑐 ↑ 𝑑)  = 𝒂1
(𝑏↑𝑐↑𝑑) = 𝒂1

(𝑏.𝑐.𝑑 ) =  𝒂(𝒃.𝒄.𝒅 ) 
 
 , 

𝑎 ↑ 𝑏 ↑ 𝑐 ↑ 𝑑 ↑ 𝑒 = 𝑎 ↑ (𝑏 ↑ 𝑐 ↑ 𝑑 ↑ 𝑒)  = 𝒂1
(𝑏↑𝑐↑𝑑↑𝑒) = 𝒂1

(𝑏.𝑐.𝑑.𝑒)  =  𝒂(𝒃.𝒄.𝒅.𝒆) 
 
 , 

    𝑎 ↑↑ 𝑏 ↑ 𝑐 ↑ 𝑑 ↑ 𝑒 = 𝑎 ↑↑ (𝑏 ↑ 𝑐 ↑ 𝑑 ↑ 𝑒)  = 𝒂𝟐
(𝑏↑𝑐↑𝑑↑𝑒) =  𝒂𝟐

(𝑏.𝑐.𝑑.𝑒) , 

Hyperoperations extend arithmetic operations beyond exponentiation. Specifically, 

exponentiation, defined as iterated multiplication for a natural power 𝑏, is denoted by a single 

up-arrow in Knuth's notation. In Al-Ossmi’s arrow-free notation, this operation is represented 

when (𝑛 = 1), as:(𝑎1
𝑏) which is also donated by: 𝑎𝑏 

 
. In this new notation, expressions are 

evaluated from right to left due to the right-associative nature of the operators. Tetration, which is 

defined as iterated exponentiation, is represented in Knuth's notation using a "double arrow": 

𝑎 ↑↑ 𝑏 =  𝑎2
𝑏  = 𝒂𝒏−1

(𝒃) = 𝒂 
(𝒃 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝒂) 

 
, 

For example;  

           𝟑 ↑↑ 𝟒 =  3 ↑ 3 ↑ 3 ↑ 3 = 𝟑𝟑
𝟑𝟑

  

                          3 ↑↑ 4 =  𝟑𝟐
𝟒 = 𝟑𝟏

 𝟑𝟏
 𝟑𝟏

 𝟑𝟏
 = 𝟑𝟑

𝟑𝟑

           

According to this definition, examples of numbers which are written by Knuth’s can be 

rewritten out by the Al-Ossmi’s arrow-free notation as following:  

3 ↑↑ 𝟐 = 3 ↑ 3 = 32
𝟐 = 31

 31
 = 𝟑𝟑    

3 ↑↑ 𝟑 = 3 ↑ 3 ↑ 3 = 32
𝟑
= 31

 31
 31

 
= 𝟑𝟑

𝟑
    

3 ↑↑ 𝟒 = 3 ↑ 3 ↑ 3 ↑ 3 = 32
𝟒 = 31

 31
 31

 31
 = 𝟑𝟑

𝟑𝟑
𝟑

   

3 ↑↑ 𝟓 = 3 ↑ 3 ↑ 3 ↑ 3 ↑ 3 = 32
𝟓  = 31

 31
 31

 31
 31

 = 𝟑𝟑
𝟑𝟑
𝟑

   

This process results in exceedingly large numbers, yet the hyperoperator sequence extends 

further. Pentation, which is defined as iterated tetration and denoted by Knuth using the "triple 

arrow,"𝑎 ↑↑↑ 𝑏, and by the arrow-free notation, it is simply represented as: 𝑎3
b . According to 

this definition:   
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3 ↑↑↑ 𝟐 =  33
𝟐    

10 ↑↑↑↑ 5 =  104
𝟓    

Hexation and beyond, which are defined as iterated pentation, are represented using Knuth’s 

“quadruple arrow” notation as 𝑎 ↑↑↑↑ 𝑏 . In Al-Ossmi’s notation, these operations are expressed 

as 𝑎4
𝑏. According to this definition: 

3 ↑↑↑↑ 2 = 34
𝟐     

10 ↑↑↑↑↑↑ 5 = 106
𝟓
    

The sequence of operations begins with a unary operation (hence the successor function for 

(𝑛 = 0) and extends through binary operations such as addition (𝑛 = 1), multiplication (𝑛 =

2), exponentiation (𝑛 = 3), tetration (𝑛 = 4), pentation (𝑛 = 5), and so on. Different notations 

have been used to represent these hyperoperations. In Al-Ossmi’s notation, the base is 

represented by a, with b indicating the number of copies of a. Therefore, an n-arrow operator 

in Al-Ossmi’s notation translates into a right-associative series of n-arrow operators. 

Symbolically:  

𝑎 ↑↑ ⋯ ↑ 𝑏 =  𝒂𝒏 𝒃 , 

 𝑏  𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑎 

Examples: 

2 ↑↑↑ 2 = 2 ↑↑ 𝟐 =  23
𝟐  = 22

𝟐   

3 ↑↑↑ 2 = 3 ↑↑ 𝟑 =  33
𝟐
 = 32

𝟑   

3 ↑↑↑ 𝟑 =  33
𝟑
    

3 ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ 𝟔 = 3 ↑𝟐𝟑
 
𝟔 =  3𝟐𝟑

𝟔     

3 ↑10
100

𝟒 =  3
10

(100) 
𝟒 =  310.100

𝟒     

3 ↑10
23.5

𝟒 =  3
10

(23.5) 
𝟒 =  3

10.(23.5)

𝟒
   

3 ↑10
235 

𝟒 =  3
10

(235 )
 

𝟒 =  3
10.23.5 

𝟒
    

 

This flexibility of Al-Ossmi’s notation with forms; 𝒂𝒏
𝒃  , 𝒂𝒏

𝒃.𝒄
 
 or  𝒂𝒏

𝒃.𝒄.𝒅.𝒆.𝒇.𝒈.𝒉

 
 , all allow for 

a compact and structured way to represent extremely large numbers. These power tower 

(𝑏. 𝑐. 𝑑. 𝑒) are components to describe complex and extended depth and extend the depth 

further, representing additional layers of power towers or nested operations. By accurately 

reflecting the base, height (with nuanced depth like 𝑏. 𝑐. 𝑑, indicating an extended height in the 

power tower), and level of exponentiation, it simplifies understanding and interpreting large 

numbers. The use of multiple components separated by dots allows for a detailed and nuanced 

representation of the structure of the large number. This notation captures the nuances of the 
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structure of these numbers, including the base, height, depth, and level of operations, making it 

easier to understand and work with extremely large values.  

4.1 Compared with Conway’s chained notation: Let (𝑎 > 1) is the base, (𝑏 > 1) is the 

tower power, and (𝑛 ≥ 1) is the arrow's number, then Al-Ossmi’s arrow-free notation can be 

written as: 

𝑎 ↑𝑛 𝑏 =  𝑎 → 𝑏 → 𝑛 =  𝒂𝒏
𝒃  = (𝒂𝒏

 …𝒃 𝑐𝑜𝑝𝑖𝑒𝑠 
 𝑜𝑓 𝒂) = 𝒂(𝒃 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝒂) 

  
 

When the number is power by n times, then the Al-Ossmi’s notation presents the power 

tower by adding the base a, arrows number = 𝑛, and 𝑏 = number of tower of 𝑎 , for example:  
 

 𝑎 → 𝑎 → 1 = 𝒂𝟏
𝒂  = 𝒂𝒂 

      

2 → 2 → 1 = 𝟐𝟏
𝟐 = 𝟐𝟐 

  
= 𝟒      

where 𝟐𝟏
𝟐 represents 2 with one level of iteration (simple exponentiation), and a height of 2.  

2 → (2 → 2 → 1) → 2  =  𝟐𝟐
𝟑 = 𝟐𝟏

 𝟐𝟏
 𝟐𝟏

 = 𝟐𝟐
𝟐
= 𝟐𝟒 

 
= 𝟏𝟔   

where 𝟐𝟐
𝟑 represents 2 with one level of iteration (simple exponentiation), and a height of 3.   

2 → (2 → 2 → 2) → 1 = 2 → (16) → 2 =   𝟐𝟐
𝟒 = 𝟐𝟏

 𝟐𝟏
 𝟐𝟏

 𝟐𝟏
 = 𝟐𝟐

𝟐𝟐

=  𝟔𝟓, 𝟓𝟑𝟔    
 

where 𝟐𝟐
𝟒 represents 2 with one level of iteration (simple exponentiation) and a height of 4. 

and form rule of (3); we can write it out as; 𝑎2
b  = 𝒂 

(𝒃 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝒂)  , which is applied in this 

example: 

𝟏𝟎10
1011

= 10 → 10 → 1 → (10 → 11 → 1) → 2 = 𝟏𝟎𝟐
𝟑(𝟏𝟏)  

                              = 𝟏𝟎𝟏
 𝟏𝟎𝟏

 𝟏𝟎𝟏
(𝟏𝟏) 

 

 
= 𝟏𝟎𝟐

𝟑(𝟏𝟏) = 𝟏𝟎𝟐
(𝟑.𝟏𝟏)

 

                           

 
            

where 𝟏𝟎𝟐
𝟑.𝟏𝟏 represents 10 with 2 levels of iteration (simple exponentiation), and a height 

of 10 to the power of 11 and raised 3 times.   

𝟑3
(56)2

= 3 → (3 → (56 → 2 → 1) → 1) → 1 =   𝟑𝟏
𝟑(𝟓𝟔)

𝟐   

                 =  𝟑𝟏
 𝟑𝟏

 (𝟓𝟔)
𝟐  = 𝟑𝟑 

 (𝟓𝟔)
𝟐  

 

 

= 𝟑𝟏
𝟑.(𝟑𝟏𝟑𝟔) = 𝟑𝟐

𝟐.(𝟑𝟏𝟑𝟔)        

Example1: 

   𝟏𝟎10
1010

10

= 𝟏𝟎𝟐
𝟓
 
= 101

 101
 101

 101
 101

  
 
   

Example2: 

𝟏𝟎10
303 

= 𝟏𝟎𝟐
𝟐(𝟑𝟎𝟑) = 101

 10 
 
1
(303)

 

 
  
 

 
            

Example3:   

𝟏𝟎2
303 

= 𝟏𝟎𝟏
𝟐(𝟑𝟎𝟑) = 101

2.303 = 10 
2.303                         

The difference between 𝟏𝟎𝟏
 𝟏𝟎 

 
𝟏
(𝟑𝟎𝟑)

 

 
  , 
 regarding 𝟏𝟎𝟏

𝟐.𝟑𝟎𝟑 , is in how exponentially larger the 

exponent of 𝒂𝟏
𝒃(𝒄)   compared to the exponent of 𝒂 

𝒃(𝒄) . The difference between 𝟏𝟎𝟐
𝟐(𝟑𝟎𝟑) and 
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𝟏𝟎𝟏
𝟐.(𝟑𝟎𝟑) 

 lies in the magnitude of the exponent. The exponent itself, 10303, is already a number 

with 304 digits (a 1 followed by 303 zeros). When you raise 10 to this power, you get a number 

with 10303 digits.    

Al-Ossmi’s free arrows notation 𝑎𝑛
𝑏  for expressing large numbers, a is the base number, b 

is the height or number of iterations in the power tower, and n is the level or number of arrows 

in Knuth's up-arrow notation.   

Base Case (𝑛 = 𝟏): Exponentiation: 𝑎𝑛
𝑏 = 𝑎1

𝒃 = 𝒂𝒃    

Example:  2 ↑ 3 = 𝟐𝟏
𝟑 = 2 × 2 × 2 = 𝟐𝟑 = 8   

Two Levels (𝑛 = 𝟐): Tetration (iterated exponentiation): 𝒂2
𝒃 = 𝑎 ↑↑ 𝑏   

Example: 𝟐 ↑↑ 𝟑 = 2 ↑ (2 ↑ 2) = 2 ↑ (22) = 𝟐(𝟐
𝟐)   

From the rules of (2 & 3), we find; 𝟐 ↑↑ 𝟑 =  𝟐𝟐
𝟑 = 𝟐𝟏

 (𝟐𝟏
 𝟐𝟏

  ) = 
 𝟐(𝟐

𝟐) = 16  

For 𝑎 = 10 , 𝑏 = 3 (height of the tower), and, (𝑛 = 2) , (level of operation), then form the 

rules of (2 and 3), we find;  

10 ↑↑ 3 = 𝟏𝟎𝟐
𝟑 = 101(101101) = 10 

(1010)  
     

Three Levels (𝑛 = 𝟑): Pentation (iterated tetration):  

𝒂𝟑
𝒃 = 𝑎 ↑↑↑ 𝑏 = 𝑎 ↑↑ (…𝑎 ↑↑ 𝑎)  , (with b copies of a), then: 

𝒂 ↑↑↑ 𝒃 = 𝒂𝒏
𝒃 =  𝒂(𝒏−𝟏)

𝒃 (𝒂(𝒏−𝟏)
(𝒃 𝒄𝒐𝒑𝒊𝒆𝒔 𝒐𝒇 𝒂)

) , 

Example, according to Knuth’s;  

𝟐 ↑↑↑ 𝟑 = 2 ↑↑ (𝟐 ↑↑ 𝟐 ) = 2 ↑↑ (𝟐 ↑ 𝟐) = 2 ↑↑ (𝟐𝟐) ≡ 𝟐 ↑↑ 𝟒   

Then according to the Al-Ossmi’s arrow-free notation’s; 

 𝟐 ↑↑↑ 𝟑 = 𝟐𝟑
𝟑 , 

𝟐 ↑↑ (𝟐𝟐) = 𝟐 ↑↑ 𝟒 = 𝟐𝟐
(𝟐𝟏
 𝟐𝟏

 )
= 𝟐𝟐

(𝟐𝟐)
= 𝟐𝟐

(𝟒) = 𝟐𝟐
𝟒   

𝟐 ↑↑↑ 𝟑 ≡ 𝟐 ↑↑ 𝟒 ≡ 𝟐𝟑
𝟑 ≡ 𝟐𝟐

𝟒     

Let us prove that;  𝒂 ↑↑ 𝑏 = 𝒂 ↑ (𝒂 ↑ 𝒂) = 𝒂(𝑎
𝑎) , which can be written as 𝒂𝟐

𝒃 . 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒; 𝟏𝟎𝟐
𝟑 = 10 ↑↑ 3 = 10 ↑ (𝟏𝟎 ↑ 𝟏𝟎) = 10 ↑ (𝟏𝟎𝟏𝟎) ≡ 10(𝟏𝟎

𝟏𝟎)    

            𝟏𝟎𝟐
𝟑 = 𝟏𝟎1

  (𝟏𝟎1
   𝟏𝟎1

  ) = 𝟏𝟎1
  (𝟏𝟎𝟏𝟎) =  𝟏𝟎 

(𝟏𝟎𝟏𝟎)  = 𝟏𝟎 ↑↑ 𝟑           

        By Al-Ossmi’s arrow-free notation definition, represents 𝑎 ↑𝑛  𝑏  𝑎𝑠;  𝑎𝑛
𝑏, which matches 

our calculation above. Al-Ossmi’s notation provides a concise and efficient way to represent 

very large numbers, combining the simplicity of Knuth's up-arrow notation with a clear 

structure for understanding the depth and height of power towers.  
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Example 4: 

𝟑 ↑↑↑ 𝟒 

According to Knuth’s;  

 𝟑 ↑↑↑ 𝟒 = 3 ↑↑ 3 ↑↑ (𝟑 ↑↑ 𝟑) = 3 ↑↑ 3 ↑↑ (𝟑 ↑ 𝟑 ↑ 𝟑) = 3 ↑↑ 3 ↑↑ (𝟑𝟑
𝟑
)   

Then according to the Al-Ossmi’s arrow-free notation’s; 

 𝟑 ↑↑↑ 𝟒 = 𝟑𝟑
𝟒 = 𝟑𝟐

𝟑𝟑𝟐
(𝟑𝟏
 𝟑𝟏

 𝟑𝟏
 )
= 𝟑𝟐

𝟑𝟑
𝟐

(𝟑𝟑
𝟑
)
= 𝟑𝟐

𝟑𝟑𝟐
(7,625,597,484,987)    

General Case (𝑛 ≥  1): Iterated (𝑛 − 1)  level operation:   

𝑎𝑛
𝑏 = 𝑎 ↑𝑛 𝑏 = 𝑎 ↑(𝑛−1) (𝑎 ↑(𝑛−1) (…𝑎 ↑𝑛−1 𝑎)), (b copies of a)  

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟓; 

 𝟓 ↑↑↑ 𝟒 = 5 ↑↑ (5 ↑↑ (𝟓 ↑↑ 𝟓) ) = 5 ↑↑ (5 ↑↑ (𝟓 ↑ 𝟓 ↑ 𝟓 ↑ 𝟓 ↑ 𝟓) ) , 

𝟓 ↑↑↑ 𝟒 = 𝟓𝟑
𝟒 = 𝟓𝟐

𝟓 (52
(𝟓𝟏
 𝟓𝟏

 𝟓𝟏
 𝟓𝟏

 𝟓𝟏
 )
) =  𝟓𝟐

𝟓(52

(𝟓𝟓
𝟓𝟓
𝟓

)

)    

 

By defining the base (a), height (b), and level (n), it simplifies the notation and makes it 

easier to interpret and calculate extremely large values. Additional examples such as:    

𝟐(

 
 
 
 
 

22
22
22
22
22
22
22
2

)

 
 
 
 
 

=  2 → 15 → 2 → 2 → 1 = 𝟐𝟐 
𝟏𝟔   

𝟐4
44
44

=   2 → (4 → 4 → 4 → 4 → 4) → 1 =  𝟐𝟏
𝟒
 

 
(𝟒𝟐

𝟓) 
 

 
   

𝟐𝟒
55
5

=   2 → 4 → (5 → (5 → 5 → 1) → 1) → 1 = 𝟐𝟏
𝟒 
 

(𝟓𝟐
𝟑)
 

 
   
    

𝟐𝟑
55
4

=  2 → 3 → (5 → (5 → 4 → 1) → 1) → 1 =  𝟐𝟏
𝟑 (𝟓𝟐

𝟐)
𝟒
   
     ; 

   𝒂𝑎
𝑎𝑎

(3.567)

=  𝑎 → (𝑎 → (𝑎 → (𝑎 → 1) → 3.567 → 1) → 1) → 1   

                                     = (𝒂𝟐
𝟒 
 

)
(3.567)

   
         

4.2 Discussion: For further clarification, a practical application of the new notation will be 

demonstrated on a large and diversed set of very big numbers, encompassing the widest possible 

range of number cases that can be written in this notation, as shown in the following Table 1.      
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Table 1: A set of detailed examples written by Al-Ossmi’s arrow- free notation : 

Al-Ossmi’s notation Interpretation 

101
2 

 

 
 10 ↑ 2 =  102 = 100 

102
2 10 ↑↑ 2 =  1010 = 10,000,000,000 

102
3 10 ↑↑ 3 =  10 ↑ 10 ↑ 10 

102
4 10 ↑↑ 4 =  10 ↑ 10 ↑ 10 ↑ 10 

103
3 10 ↑↑↑ 3 =  10 ↑↑ 10 ↑↑ 10 

102
6 10 ↑↑ 6 =   10 → 6 → 2 

103
11 10 ↑↑↑ 11, This is simply 10 raised to the power of 11. 

101
64 

 

 
 104

3 
  

= 10 ↑ (4 ↑ 3) = 10 ↑ 64 =  10 → (64) → 1 

32
3 3 ↑↑ 3 = (3 ↑ 3 ↑ 3) =  (7,625,597,484,987) 

43
2 = 42

4 4 ↑↑↑ 2 = 4 ↑↑ 4 = (4 ↑ 4 ↑ 4 ↑ 4) = 44
44

 

53
4 5 ↑↑↑ 4 =  5 ↑↑ 5 ↑↑ (5 ↑↑ 5 ), it is a tetration of 5 repeated 4 times. 

34
3 

 

3𝐺𝑛
3  

 

3𝐺63
3  

Graham's Number G: 

3 ↑4 3 =  3 → 3 → 4 

𝐺𝑛+1  =  3 ↑
𝐺𝑛 3  starting from 𝐺1 𝑡𝑜  𝐺64 

𝐺𝑛+1  =  33
𝐺𝑛 , for 64 steps:   𝐺63+1 =  33

𝐺63 

3𝐺64
10  3 ↑𝐺64 10  =  3 → 10 → 𝐺64   

 534 
4  5 ↑34 4 = 5 → 4 → 34 

 534 

(𝟒𝟏𝟏𝟑𝟎𝟎
𝟏𝟐 )

 
5 ↑34 (411 ↑300

12 )   =  5 → (411 → 300 → 12) → 34 

 102
2
(34

25
)

 

 

 

 1010
(34

25
)

 = 10 ↑ 10 ↑ (3 ↑ 4 ↑ 2 ↑ 5) 

 106.12.200.3 
 
 

106
12200

3

= 10 ↑ (6 ↑ 12 ↑ 200 ↑ 3) 
Al-Ossmi’s notation Interpretation 

 103.4.3402.5.3.4.2001 
 
 

                   83
43402

53
42001

= 

=  8 ↑ (3 ↑ (4 ↑ (3402 ↑ 5 ↑ 3 ↑ 4 ↑ 2001))) 

 102 
10.10.303  

10 ↑↑ 10 ↑ 10 ↑ 303 = 10 ↑↑ (10 ↑ 10 ↑ 303 ) 
 

1001
103 =  1001

1000
  

 

  

 
 1001000

 
= 10010

3   

 1002
5
  

 
 

100100
100100

100 

 

1002
4(12) = 1002

4.12
  

 
 

100100
100100

12 

 

 102 
3×10.(3,000,000,003)

 10 ↑↑ (3 × 10 ↑ 3,000,000,003) 
 

Let's apply the new Al-Ossmi’s free arrows notation in case of 𝒂𝒏
𝒃.𝒄

 
,to describe such the 

number:𝑎(𝑎
𝑎𝑐)

. The given number is a power tower with the base a and height 3 exponents, 

with the topmost exponent being c. From the notation definition, the height or number of 

iterations in the power tower is b, and n is the level or number of arrows (exponentiation depth).  

Example and interpretation: 𝒂2
(𝒃 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑎)(𝑐)

= 𝒂2
(𝒃 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑎).𝑐

.  

Base (𝑎) = 10     

Height (b): The height of the power tower here includes the topmost exponent and any 

additional exponents as iterations;  (𝑎𝑎
𝑐
):  
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Since the topmost exponent is 𝟏𝟎(𝟏𝟎
𝟏𝟎12)

, we adjust the height to reflect this deep nesting. 

Level (n): Since this is straightforward exponentiation (second level of up-arrow), 𝑛 = 2. 

We describe it in a notation reflecting (3(12)) height, combining the depth and extending 

beyond simple iteration count. If we consider it as an iteration extending beyond the simple 

height, we express it as: 1010
1012

= 102
3(12) = 102

3.12, 

This flexibility of Al-Ossmi’s notation with forms;  𝒂𝒏
𝒃.𝒄

 
 or  𝒂𝒏

𝒃.𝒄.𝒅.𝒆.𝒇.𝒈.𝒉

 
 allows for a compact 

and structured way to represent extremely large numbers. These (𝑏. 𝑐. 𝑑. 𝑒) are components to 

describe complex and extended depth and extend the depth further, representing additional 

layers of power towers or nested operations. By accurately reflecting the base, height (with 

nuanced depth like 𝑏. 𝑐. 𝑑, indicating an extended height in the power tower), and level of 

exponentiation, it simplifies understanding and interpreting large numbers. The use of multiple 

components separated by dots allows for a detailed and nuanced representation of the structure 

of the large number. This notation captures the nuances of the structure of these numbers, 

including the base, height, depth, and level of operations, making it easier to understand and 

work with extremely large values.   

The original estimate is then when (𝑛 > 1), the value of b indicates to the tetration of the 

base, a. More precisely, the examples: 
 

                                                       𝟐𝟏
𝟑 =  2 ↑ 3 =  𝟐𝟑 =  8 ,  

whereas;  𝟐𝟐
𝟑  =  2 ↑↑ 3 =  2 ↑ (2 ↑ 2) =  𝟐(𝟐

𝟐) = 𝟏𝟔   

note that;  𝟐𝟑
𝟑  =  2 ↑↑↑ 3 =  2 ↑↑ (2 ↑↑ (2 ↑ 2 ↑ 2)) =  2 ↑↑ (2 ↑↑ (𝟐𝟐

𝟐
))  

Therefore, compared with notations such as Conway’s chained and Knuth’s, the value of n 

is related to the   number of arrows, while it is by Al-Ossmi’s notation indicates that we deal 

with a tetration process, thus value of n in Al-Ossmi’s does not help to determine the exact 

value of the number. Al-Ossmi’s arrow-free notation easily helps to write out extremely large 

power towers, as it is listed in Table 2 and 3.  

Table 2: Systems of key Notations for Arithmetic Operators. 

Arithmetic Standard Ackermann’s Knuth’s Conway’s Al-Ossmi’s 

Exponentiation a^b ack(a,b,2) 𝑎 ↑ 𝑏 𝑎 → 𝑏 → 1 𝒂𝒃 

Tetration 𝑎 
𝑏   ack(a,b,3) 𝑎 ↑↑ 𝑏 𝑎 → 𝑏 → 2 𝒂𝟐 

𝒃  

Pentation b^a ack(a,b,4) 𝑎 ↑↑↑ 𝑏 𝑎 → 𝑏 → 3 𝒂𝟑 
𝒃  

Hexation - ack(a,b,5) 𝑎 ↑↑↑↑ 𝑏 𝑎 → 𝑏 → 4 𝒂𝟒 
𝒃  

Fundamental rule - ack(a,b,n) 𝑎 ↑𝑛  𝑏 𝑎 → 𝑏 → 𝑛 𝒂𝒏 
𝒃  

Where: 

a, b, n are positive integers, hence: 

a is the base number, 

b copies of a, 

n is the arrow number. 
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Table 3: Al-Ossmi’s free arrows notation of a set of extremely huge numbers in form of titration 

exponential express. 

    

5. Conclusions 

In this paper, we introduce a novel notation for expressing extremely large numbers, named 

Al-Ossmi’s notation after its creator. This notation aims to compactly represent large numbers 

by providing a clear structure that shows the base, the level of iteration, and the depth of the 

operation. By doing so, it offers an efficient and unambiguous method for handling vast 

numerical values, making it a valuable tool for mathematicians and computer scientists. 

Al-Ossmi’s arrow-free notation is defined as;  𝑎𝑛 
𝑏
 
, 𝑎𝑛

𝑏.𝑐
 
 , or  𝑎𝑛

𝑏.𝑐.𝑑.𝑒
 
, where: 

• a: The base number. 

• b,c,d,e etc.: The number of iterations or the height of the power tower. 

• n: The level of operation or the number of arrows in Knuth's notation. 

The original estimate is then this notation can be extended to include more complex 

structures, such as 𝑎𝑛 
𝑏
 
, 𝑎𝑛

𝑏.𝑐
 
 , or  𝑎𝑛

𝑏.𝑐.𝑑.𝑒.𝑓.𝑔

 
, to represent additional levels of nested operations, 

where d and c, are variables. Al-Ossmi’s arrow-free notation simplifies the representation of 

very large numbers by using a compact form that corresponds to (𝑎 ↑𝑛 𝑏) in Knuth's notation 

Number Name Exponential Notation Al-Ossmi’s notation 

Skewes number 𝟏𝟎𝟏𝟎
𝟏𝟎𝟑𝟒

 𝟏𝟎𝟐
𝟑.𝟑𝟒

 
 

Pentalogue 𝟏𝟎𝟏𝟎
𝟏𝟎𝟏𝟎

𝟏𝟎

 𝟏𝟎𝟐
𝟓
 
 

Millyllion 𝟏𝟎𝟐
𝟏𝟎𝟎𝟐 

 𝟏𝟎𝟏
𝟐.𝟏𝟎𝟎𝟐

 
 

Gigillion 𝟏𝟎𝟑×𝟏𝟎
𝟑,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎+𝟑 

 

 𝟏𝟎𝟏
𝟑×𝟏𝟎𝟑,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎+𝟑

 
 

Ecetonplex 𝟏𝟎𝟏𝟎
𝟑𝟎𝟑 

 𝟏𝟎𝟐
𝟐.𝟑𝟎𝟑

 
 

Heskironduplex 𝟏𝟎𝟏𝟎
𝟏𝟎𝟔𝟎𝟎

 

 𝟏𝟎𝟐
𝟑.𝟔𝟎𝟎

 
 

Googolduplexichime 𝟏𝟎𝟏𝟎
𝟏𝟎𝟏𝟎𝟎𝟎

 

 𝟏𝟎𝟐
𝟑.𝟏𝟎𝟎𝟎

 
 

Guppyduplexitoll 𝟏𝟎𝟏𝟎
𝟏𝟎𝟐𝟎𝟎𝟎

 

 𝟏𝟎𝟐
𝟑.𝟐𝟎𝟎𝟎

 
 

Googolduplexibell 𝟏𝟎𝟏𝟎
𝟏𝟎𝟓𝟎𝟎𝟎

 

 𝟏𝟎𝟐
𝟑.𝟓𝟎𝟎𝟎

 
 

Millinillion 𝟏𝟎𝟑𝟎𝟎𝟑
  

 𝟏𝟎𝟏
𝟑𝟎𝟎𝟑

 
 

Millinillinillion 𝟏𝟎𝟑𝟎𝟎𝟎𝟎𝟎𝟑 𝟏𝟎𝟏
𝟑𝟎𝟎𝟎𝟎𝟎𝟑 

Hepta-taxis 𝟏𝟎 ↑↑↑ 𝟕 𝟏𝟎𝟑
𝟕 

Hexa-taxis 𝟏𝟎 ↑↑↑ 𝟔 𝟏𝟎𝟑
𝟔 

Penta-taxis 𝟏𝟎 ↑↑↑ 𝟓 𝟏𝟎𝟑
𝟓 

Boogafive 𝟓 ↑↑↑ 𝟓 𝟓𝟑
𝟓 

Tetra-taxis 𝟓 ↑↑↑ 𝟒 𝟓𝟑
𝟒 

Gigaexpofaxul 𝟏𝟎 ↑↑↑ (𝟓 + 𝟗𝟖) 𝟏𝟎𝟑
(𝟓+𝟗𝟖)

 

𝑻𝒘𝒐 𝟐 ↑ 𝟏 𝟐𝟏
𝟏 = 𝟐𝟏 = 𝟐 
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and 𝑎 → 𝑏 → 𝑛 in the Conway's chained arrow notation. It combines these notations into a 

concise and easily readable format, reducing the complexity and length of numerical 

expressions. This notation is more standardized and better recognized within the mathematical 

community, making it effective for communicating and working with extremely large numbers. 

It is less cumbersome than writing multiple up-arrows or chaining arrows and is easy to write 

and understand once the rules are clear. To facilitate the adoption of Al-Ossmi’s notation, 

detailed documentation and examples are provided. This includes practical applications in 

various fields such as physics, astronomy, and large number theory, where extremely large 

numbers are common. Al-Ossmi’s arrow-free notation utilities in different fields, in physics or 

astronomy, this notation can simplify expressions and calculations involving vast quantities. In 

combinatorial mathematics or proofs involving large number theory, it provides clarity and 

precision.  
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