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Abstract:

This article introduces a new notation for expressing extremely large numbers, based on the
hyperoperation concept in group theory. The method employs a finite sequence of positive
integers separated by specific notational symbols, allowing for concise representation through
an arrow-free notation: (a2), where b represents the number of copies of a, and n denotes the
arrow’s number described by a general formula. This recursive definition aims to replace the
Knuth up-arrow notation and Conway chained arrow notation, which require the insertion of
arrows between or within numbers. The new approach simplifies these expressions, eliminating
the need for such symbols and providing a straightforward and concise method for representing
large numbers. The aim was to develop a more efficient method, arrow-free notation, reducing

the complexity and steps necessary with previous notations.

Keywords: Number Theory, Knuth Up-Arrow Notation, Conway Chained Arrow

Notation, Hyperoperation.
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1. Introduction:

The notation x "y for tetration, introduced by Hans Maurer in 1901, has evolved significantly
over the years [1]. In 1947, Reuben Louis Goodstein coined the term tetration and named other
hyper-operations [2]. Andrzej Grzegorczyk further advanced this field in 1953, leading to the
sequence of hyper-operations sometimes being referred to as the Grzegorczyk hierarchy [2,3].
Rudy Rucker's 1995 publication, Infinity and the Mind, popularized this notation extensively
[4], despite his credit sometimes being mistakenly attributed to its first use. In 1976, Donald E.
Knuth developed the Up-arrow notation for hyper-operations [4], which has found significant
success on the internet due to its convenience in representing tetration as "x""y”. More
recently, in 1996, John Horton Conway and Richard K. Guy introduced another hyper-operation
notation in their book The Book of Numbers [2,3]. Large numbers, which significantly exceed
those typically encountered in everyday life, such as in simple counting or monetary

transactions, are frequently found in fields like mathematics, cosmology, cryptography, and
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statistical mechanics. In 2002, Jonathan Bowers developed Array Notation, which extends

beyond hyperoperations while still encompassing them [3]. Bowers' notation includes an infix
notation known as extended operator notation, equivalent in all respects to the current de facto
standard notation for hyperoperations [4,5].

In mathematics, large numbers, defined as numbers exceeding one million, are typically
represented either using exponents, such as (1079, or 10%), or by terms like billion or thousand
million, which vary across different numeration systems. The American system of numeration
for denominations above one million was originally based on a French system. However, in
1948, the French system was modified to align with the German and British systems [6,7]. In
the American system, each denomination above one thousand million (the American billion) is
1,000 times the preceding one (for example, one trillion equals 1,000 billion; one quadrillion
equals 1,000 trillions). Conversely, in the British system, each denomination is 1,000,000 times
the preceding one (for example, one trillion equals 1,000,000 billion), with the exception of the
term "milliard,” which is sometimes used for one thousand million. In recent years, British
usage has increasingly reflected the widespread adoption of the American system [8].

Scientific notation was devised to handle the vast range of values that arise in scientific
research. For example, 1.0 X 10° denotes one billion, or a 1 followed by nine zeros:
1,000,000,000. Its reciprocal, 1.0 x 10~2, represents one billionth, or 0.000000001. Using 10°
instead of nine zeros alleviates the reader's effort and minimizes the risk of errors associated
with counting a long series of zeros to determine the magnitude of the number [9]. In addition
to scientific (powers of 10) notation, the following examples illustrate the systematic
nomenclature of large numbers based on the short scale. The Avogadro constant [10], for
example, is the number of “elementary entities” (usually atoms or molecules) in one mole; the
number of atoms in 12 grams of carbon-12 is approximately 6.022 x 1023, or 602.2 sextillion.
The lower bound on the game-tree complexity of chess, also known as the “Shannon number”
(estimated at around 1012°), or 1 novemtrigintillion. Rayo's number, named after Agustin
Rayo, is a large number that has been claimed to be the largest named number [11]. At MIT on
January 26, it was first defined during a "big number duel”, 2007[12]. Graham's number, which
surpasses what can be represented using power towers (tetration), can nonetheless be expressed
using layers of Knuth's up-arrow notation. Nevertheless, there are very specific methods used
to write out such huge numbers. Godel numbers, as well as similar huge numbers used to
represent bit-strings in algorithmic information theory, are extraordinarily large, even for
mathematical statements of moderate length. One of the earliest mentions of hyperoperations

was by Albert Bennett in 1914, where he developed a portion of his theory on commutative
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hyperoperations [11,12]. Twelve years later, Wilhelm Ackermann defined a function, denoted

as (¢), which resembled a sequence of hyperoperations. In a 1947 paper, the Greek
mathematician Ruben Goodstein introduced a sequence of operations now known as
hyperoperations [12]. He extended these operations beyond exponentiation by adding the
subsequent steps, which he suggested be called tetration and pentation. As a function with three
arguments, this is recognized as a variant of the original Ackermann function. Nevertheless,
some pathological numbers surpass the magnitude of Gédel numbers associated with typical
mathematical propositions [10,11]. In general, there are very specific methods used to write out
such extremely large numbers, such as:

« Scientific Notation: A way of expressing numbers as a product of a coefficient and a
power of 10[11]. For example, 3.2 x 10° represents 3,200,000,000,000,000.

« Knuth's Up-Arrow Notation: A technique to represent exemplifying very large integers
using arrows to denote iterated exponentiation [11]. For instance, 3 11 3 is (3%°), or
(327), which is (7,625,597,484,987).

o Conway's Chain Arrow Notation: An extension of up-arrow notation, useful for
representing even larger numbers [12]. For example, 3 = 3 — 3 represents a very large
number.

« Steinhaus-Moser Notation: A way to represent very large numbers using polygons and
the Ackermann function [13]. For example, 2 inside a triangle (A2) is equivalent to 2.2
or 4, but the notation can escalate quickly to represent vastly larger numbers.

e Hyper-E notation: A notation for expressing extremely large numbers, using "E" to
denote a level of exponentiation beyond standard operations [14]. For example, 3E3
represents (327).

o Tree notation: Used in certain contexts like Kruskal's tree theorem [11,15], where
numbers grow rapidly with tree structures and graph-related operations.

A standardized method for writing very large numbers facilitates their easy sorting in
ascending order and provides a clear understanding of how much larger one number is
compared to another. These notations represent functions of integer variables that grow at an
exceptionally rapid rate as the integer values increase. By applying these functions recursively
with large integer arguments, it is possible to construct functions that grow even more quickly.
However, functions characterized by vertical asymptotes are not appropriate for defining very
large numbers, despite their rapid growth. This is due to the fact that such functions necessitate
arguments approaching the asymptote, which involves working with extremely small values,

such as reciprocals, rather than directly addressing the construction of large numbers.
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2. Materials and methods:

In this paper, we introduce Al-Ossmi’s notation, a novel method for expressing extremely
large numbers, named after its creator, Al-Ossmi. This notation aims to compactly represent
large numbers by providing a clear structure that indicates the base, the level of iteration, and
the depth of the operation. By doing so, it offers an efficient and unambiguous method for
handling vast numerical values, making it a valuable tool for mathematicians and computer

scientists.

Al-Ossmi’s arrow-free notation is defined as; al? P °f @ \here:

e a: The base number.
e b: The number of iterations or the height of the power tower.
e n: The level of operation or the number of arrows in Knuth's notation.
Also, the arrow-free notation developed to be extended to deal with the pentation (iterated
tetration), including more complex structures, representing additional levels of nested

operations where d and c are variables, such as;

()
o(af)

a , 0r a

b.cd.e.f.g
n r Yn n

a

Al-Ossmi’s arrow-free notation simplifies the representation of very large numbers by using
a compact form that corresponds to (a 1 b) as in Knuth's up-arrow notation [15], and in
Conway's chained arrow notationa — b — n [11,16].

3. Results:

The method of writing and representing extremely large numbers is essential in mathematics,
as it helps simplify and understand complex calculations and allows for the precise and concise
expression of enormous quantities. Using specific symbols and notations to represent these
numbers facilitates their handling in various mathematical fields, enhancing the efficiency of
computations and analyses. These methods provide valuable tools for mathematicians and
scientists who deal with numbers that exceed traditional representation capabilities. In our
research, we will focus on the two most well-known methods, Knuth's up-arrow notation and
Conway's chained arrow notation.

3.1 Knuth's up-arrow notation: This notation, introduced by Donald Knuth in 1976, is a
system designed for representing very large integers [15,16]. It also illustrates the
representation of numbers and the execution of arithmetic operations within this base system.
Definition: For all integers a, b,n witha > 0,n > 1,b = 0,[16],the up-arrow operators can

be formally defined by:
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ab, ifn=1;
at™b=<1, ifn>1landb = 0;
a 1=V p(a ™ (b - 1)), otherwise

This definition employs exponentiation as the base case and tetration as repeated
exponentiation, aligning with the hyperoperation sequence but excluding the fundamental
operations of succession, addition, and multiplication. The sequence begins with a unary
operation (the successor function), for (n = 0) and progresses through binary operations such
as addition (n = 1), multiplication (n = 2), exponentiation (n = 3), as well as tetration (n =
4), and pentation (n =5), among others. This framework is often used to represent
hyperoperations with arrows, for example;

e The single arrow (T) represents exponentiation (iterated multiplication);
312=3%x3=3%2=9
e The double arrow (TT) represents tetration (iterated exponentiation);

3M4=31317(313)=31313%=3131(27)
e The triple arrow (TTT) represents pentation (iterated tetration);

3MT4=3131@31M3) =3131(31313)=31311(3%)
The up-arrow notation general definition is as follows (fora = 0,n > 1,b > 0):

at™ b=aln+1]b
Here, T stands for n arrows, so for example: 3 11115 =3 1 5.
Square brackets are another notation for hyperoperations. Exponentiation for a natural power
b is defined as iterated multiplication, which Knuth denoted by a single up-arrow:
alh=al,forexample,3T4=3x3x3x3=3%=81
Tetration is well-defined as iterated exponentiation, which Knuth denoted by a “double arrow””:

ab=at(at (..7a)), bcopiesofa’s.

3
Example; 3114 =3131(313) =3(") = 30.625597484987)
Expressions are evaluated from right to left because the operators are right-associative. This

results in very large numbers, but the hyperoperator sequence continues beyond pentation.

Pentation, defined as iterated tetration, is represented by the “triple arrow”:

at™tb=att(a™ (..77a)), hence b copies of a’s.
Example, 31114 =31T31T(B31T3)=3131TB13173)

=311311(3%) =3 11311 (7,625,597,484,987)
Hexation, which is the iteration of pentation, is denoted using the ‘“quadruple arrow”

notation: a 1111 b =a 1M1 (a 11 (.11 a)), b copies of a’s.

e —
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

48



https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Tetration
https://en.wikipedia.org/wiki/Pentation
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Tetration
https://en.wikipedia.org/wiki/Pentation

Al-Ossmi LHM. / Al-Kitab Journal for Pure Sciences (2025); 9(2):43-61.
e —

Example, 3 11114 =313 3 M3) =313 (311 (313)),

=3M3M (31 (31313))
=3 111311 (311 (7,625,597,484,987))  andso on.

The general principle is that an n-arrow operator unfolds into a right-associative sequence
of (n — 1)-arrow operators. For instance, expressing a TT b in traditional superscript notation
results in a power tower. If b is a variable or is exceptionally large, the power tower may be

denoted with ellipses and an annotation specifying the height of the tower.

at-Th=at-1(at-1(.1-1a)

~

n b copies of a

Examples:
3M2=3M3=31313=3%= 7,625,597,484,987

3MT3=31T@B1T3)=31T(31313),with; 31371 3copies of 3.
Where; 31313 = 33 = 7,625,597,484,987 copies of 3.
3MMMT4=3MM3MT@BM3)=3TT31T" (3 M@ 3))

3MT3MT (311 (31313))

31113111 (311 (3%))

= 31113 111 (3 11 (7,625,597,484,987 ))

where; 31313 = 33° = 7,625,597,484,987 copies of 3.

In this notation system, the expression a TT b can be represented as a stack of power towers,
where each level of the stack illustrates the magnitude of the level above it. If b is a variable
or excessively large, this stack may be denoted using ellipses with an annotation indicating its
height. Similarly, a TTT b can be represented by multiple columns of these power tower stacks,
where each column represents the number of power towers in the stack to its left. This up-arrow
notation simplifies the representation of these diagrams while maintaining a geometric
framework, such as tetration towers. Although this notation can handle very large numbers, the
hyperoperator sequence extends beyond this scope. For extremely large numbers, Knuth's
multiple arrows become impractical. In such cases, the n-arrow operator (T") is useful for
describing sequences with a variable number of arrows, or hyperoperators. For numbers that
surpass even this notation's capabilities, Conway's chained arrow notation can be employed.
While a chain of three elements is comparable to other notations, a chain of four or more

elements significantly enhances its capacity.
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3.2 Conway chained-arrow notation: Similar to Knuth’s, the chained-arrow notation has

several properties that are similar to exponentiation, as well as properties that are specific to
the operation and are gained from exponentiation. Conway's chained-arrow notation, invented
by mathematician John Horton Conway, is a method for representing extraordinarily large
numbers [12]. This notation involves a finite sequence of positive integers separated by
rightward arrows, such as:
2-5>(3-24-55)-6.

Like many combinatorial notations, Conway chained arrow notation is defined recursively.
Eventually, the notation simplifies to the leftmost number being raised to a very large integer
power.

Definition1: A "Conway notation™ is defined as follows:

o Any positive integer can be represented as a chain of length 1.
« A chain of length n, followed by a right-arrow — and a positive integer, together form

achainof length (n + 1) .
Any chain represents an integer, according to the six rules below [10]. Two chains are said
to be equivalent if they represent the same integer. Let a, b, n denote positive. Then:
1. Anempty chain (or a chain of length 0) is equal to 1.
2. The chain a represents the number a.
3. Thechain (a — b) represents the number (a®).
4. The chain (a - b — n) represents the number a 1" b .
ab=a-b-n
Examples can become quite intricate rapidly. Here are a few simple instances:
22 =213=2-3-2
41MM3=4-53->2
5MT2=5-2-3
Arrow chains do not represent the iterative application of a binary operator. Instead, chains
of other infixed symbols (a T b) can frequently be considered in fragments (a = b = n))

without a change, for example:

232:29:2—)(3—)2)
(232 =82=2-3)->2

21M14=21M21Q2M2)=2M21Q212)=a>b>n=2-4-3

The sixth rule in Conway's chained-arrow notation is essential. It dictates that for a sequence
with four or more elements, ending in a number 2 or higher, the sequence is transformed into

one of the same lengths but with a significantly larger penultimate element [12]. The last
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element of the sequence is reduced, which simplifies the sequence according to Knuth's detailed

procedure. This reduction process continues until the sequence is condensed to three elements,

where the fourth rule completes the recursion.

4. The Arrow-Free Notation

The need for new arithmetic operations on very large numbers arises from various practical
and theoretical considerations in fields such as science, technology, and mathematics. In this
paper, we introduce a modern approach with an arrow-free notation that allows for the
representation of numbers so large they are beyond common human experience. Al-Ossmi’s
arrow-free notation, named after its inventor, represents a function of integer variables that
escalate at an exceptionally rapid rate as these integers increase. This notation allows for the
recursive construction of increasingly faster-growing functions by applying it with large integer
arguments.

Definition 2: For all non-negative integers a, b,n witha > 0,n > 1,b = 0, the Al-Ossmi’s

arrow-free operators can be formally defined by:

a’b ) lfn = 1
b 1, ifn>1andb = 0;
a;, = .
n a, ifn>1land b =1;
Am-1) (an(b—1)), otherwise

It is important to note that Knuth did not define the "nil-arrow" operator a 1° , whereas Al-
Ossmi’s notation does include this concept. Furthermore, Al-Ossmi’s notation can be extended
to negative indices (n = —2) to align with the entire hyperoperation sequence, albeit with a
delay in the indexing, which can be formed as:

a1 p = aé’n_l) , for(n=0)

For (n = 1),we obtain the ordinary exponentiation, hence this definition uses
exponentiation; a2 = a® ,as the base case, and tetration; a5 as repeated exponentiation. This
approach aligns with the hyperoperation sequence but excludes the three fundamental
operations of succession, addition, and multiplication. Alternatively, one may choose to define

multiplication as follows:

The up-arrow operation is right-associative, meaning thatis,a T b T c , is understood to be,

al (b7Tc),instead of, (a T b) T c, while it is donated by Al-Ossmi’s arrow-free notation as:
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(%)
a(b )=aT (bTctd)=al (b.c.d) =abecd)
atblc=at (b1c) =al? = alt<) = g
aMblc=al (b1c) =al™® = al®

a™M bltc=at (b1c) =al™® = gl

Then exponentiation becomes repeated multiplication,a T b T ¢ T d in form of (a.b.c.d),

4
which means; a(b ) The formal definition would be donated by Al-Ossmi’s arrow-free

notation as iterated exponentiation of a power tower of b:
atbtctd=at (btctd) =al™? = gPo? = qlbed)

atblctdle=al (b1cTdle) =al'¥ = a4 = glbcdo)

(bTctdte) __ _(b.cd.e)
2 = Qq; ,

att bTcTdTe=alTt (bTcTdTe) =a
Hyperoperations extend arithmetic operations beyond exponentiation. Specifically,
exponentiation, defined as iterated multiplication for a natural power b, is denoted by a single
up-arrow in Knuth's notation. In Al-Ossmi’s arrow-free notation, this operation is represented
when (n = 1), as:(a?) which is also donated by: a”. In this new notation, expressions are

evaluated from right to left due to the right-associative nature of the operators. Tetration, which is

defined as iterated exponentiation, is represented in Knuth's notation using a "double arrow":

atth= a}ZJ — ar(lb—)l — a(b copies of a) )

For example;
3114313131335
3114 = 3% =3,3,3,3, =35
According to this definition, examples of numbers which are written by Knuth’s can be
rewritten out by the Al-Ossmi’s arrow-free notation as following:
3112=313=3%=3,3,=33

3113=31313=35=3,3,3; =3%
3
3114=3131313=3%=3,3,3,3; =35
3
3115=313131313=35 =3,3,3,3,3; = 3%

This process results in exceedingly large numbers, yet the hyperoperator sequence extends
further. Pentation, which is defined as iterated tetration and denoted by Knuth using the "triple
arrow,"a 111 b, and by the arrow-free notation, it is simply represented as: a8 . According to

this definition:

e —
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

52



https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq
https://en.wikipedia.org/wiki/Exponentiation

Al-Ossmi LHM. / Al-Kitab Journal for Pure Sciences (2025); 9(2):43-61.
e —

31112 = 3%

10 11115 = 103
Hexation and beyond, which are defined as iterated pentation, are represented using Knuth’s
“quadruple arrow” notation as a TTTT b . In Al-Ossmi’s notation, these operations are expressed
as a?. According to this definition:
311112 =35
10 11111 5 = 102
The sequence of operations begins with a unary operation (hence the successor function for
(n = 0) and extends through binary operations such as addition (n = 1), multiplication (n =
2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), and so on. Different notations
have been used to represent these hyperoperations. In Al-Ossmi’s notation, the base is
represented by a, with b indicating the number of copies of a. Therefore, an n-arrow operator

in Al-Ossmi’s notation translates into a right-associative series of n-arrow operators.

Symbolically:
at-1bh=ab,
b copies of a
Examples:
2MM2=212= 2% =23
31M12=313=3% =33
31173= 33
3TN 6 = 3 123 6 = 355
3 T10100 4 = 3‘;0(100) = 3‘11-0_100
10235 4 _ 4
31 4 = 3@ = 310.(23.5)
5 4
31107 4 = 3% =3
10(235) 10.23.5
This flexibility of Al-Ossmi’s notation with forms; a? , ak< or ap“**/9* all allow for

a compact and structured way to represent extremely large numbers. These power tower
(b.c.d.e) are components to describe complex and extended depth and extend the depth
further, representing additional layers of power towers or nested operations. By accurately
reflecting the base, height (with nuanced depth like b. c. d, indicating an extended height in the
power tower), and level of exponentiation, it simplifies understanding and interpreting large
numbers. The use of multiple components separated by dots allows for a detailed and nuanced
representation of the structure of the large number. This notation captures the nuances of the
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structure of these numbers, including the base, height, depth, and level of operations, making it

easier to understand and work with extremely large values.
4.1 Compared with Conway’s chained notation: Let (a > 1) is the base, (b > 1) is the
tower power, and (n > 1) is the arrow's number, then Al-Ossmi’s arrow-free notation can be

written as:
a™b=a-b-n = al = (a,..b copies of a) = alb coviesof )

When the number is power by n times, then the Al-Ossmi’s notation presents the power
tower by adding the base a, arrows number = n, and b = number of tower of a , for example:
a-»a—->1=af =a®
252-51=22=2% =4
where 22 represents 2 with one level of iteration (simple exponentiation), and a height of 2.

2-(2-2-1)-2=23=2,2,2,=2"=2% =16
where 23 represents 2 with one level of iteration (simple exponentiation), and a height of 3.

2
25 (2-2-2)->1=2-(16)->2= 2%=2,2,2,2, =2% = 65,536

where 23 represents 2 with one level of iteration (simple exponentiation) and a height of 4.
and form rule of (3); we can write it out as; ab = a®<Piesof @ \which is applied in this
example:

11
101" =10510->1- (10> 11> 1) » 2 =103""

= 10110110(111) _ 103(11) _ 10%3.11)

where 10311 represents 10 with 2 levels of iteration (simple exponentiation), and a height
of 10 to the power of 11 and raised 3 times.

2 2
33 23 ,35(652-1)51)>1 = 33¢
(56)2 (56)2 3.(3136 2.(3136
= 3,3, 33 =33019 - 326130

Examplel:
10101010 5
10 =103 =10,10,10,10,10,
Example2:
1010303 _ 10%(303) = 10,10 (303)
1
Example3:
303 (303)
102 — 10% — 10%.303 — 102.303

2.303
01

The difference between 10,10 5303) ,regarding 1 , 1S in how exponentially larger the

p© )

exponent of a’l’(c) compared to the exponent of a” . The difference between 10§(303 and
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10%'(303) lies in the magnitude of the exponent. The exponent itself, 1033, is already a number

with 304 digits (a 1 followed by 303 zeros). When you raise 10 to this power, you get a number
with 10393 digits.

Al-Ossmi’s free arrows notation a2 for expressing large numbers, a is the base number, b
is the height or number of iterations in the power tower, and n is the level or number of arrows
in Knuth's up-arrow notation.

Base Case (n = 1): Exponentiation: a2 = a? = a

b

Example: 213 =23=2x2x2=23=38
Two Levels (n = 2): Tetration (iterated exponentiation): a2 = a 11 b

Example:2 113 =21 (212) =21 (22) = 2(2%)
From the rules of (2 & 3), we find; 2 113 = 23 =2,(2,2,) = 2(2*) = 16

For a =10, b = 3 (height of the tower), and, (n = 2) , (level of operation), then form the
rules of (2 and 3), we find;

10 11 3 = 103 = 10,(10,10,) = 10(10*)
Three Levels (n = 3): Pentation (iterated tetration):

al=a ™t b=at (..a?la), (withb copies of a), then:

_ b _ b (b copies of a)
atb=a,= ag (a(n—l) )

Example, according to Knuth’s;
2TM13=21R2M2)=21212)=21T2)=214
Then according to the Al-Ossmi’s arrow-free notation’s;

21113 =23,
211 (22) =2 11 4= 22120 = 2(*) = 29 _ 24
21M13=214=23=2;
Letus prove that; a 1 b =a T (a1 a) = a®®?, which can be written as a2 .
Example; 103 =10113 =101 (10 7 10) = 10 T (1010) = 10(10")
103 = 10,(10, 10,) = 10,(10°) = 10(1°") = 10113

By Al-Ossmi’s arrow-free notation definition, represents a 1" b as; a2, which matches
our calculation above. Al-Ossmi’s notation provides a concise and efficient way to represent
very large numbers, combining the simplicity of Knuth's up-arrow notation with a clear

structure for understanding the depth and height of power towers.
P,
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Example 4:
3111 4

According to Knuth’s;
3M14=31313M3)=313M1M(@31313)=31131(3%)

Then according to the Al-Ossmi’s arrow-free notation’s;
33°
311 4 = 3§ _ 333?13131) — 3%3g ) — 3%3g7,625,597,484,987)
General Case (n = 1): Iterated (n — 1) level operation:
ah=atb=al1®D (a1 (a1 a)), (b copies of a)

Example 5;
5M4=51"TGMGMT5))=5M"TGMBT51T517515)),

5
=)
5111 4 = 5% = 53 (5,71%5%) = 53| 5

2

By defining the base (a), height (b), and level (n), it simplifies the notation and makes it

easier to interpret and calculate extremely large values. Additional examples such as:

2 =2-515-2-52->1 =216

44

4
2% = 254544451 = 21(4)

5

24 = 2545(5-o(B-5-1)-51)-1=2%(53)

4
23" =2535(6-Go4-1)-1)-1=23(53)"

4a(3:567)

a® =a-(a-»>@->@-»1)-»3567-1)-1)->1
4
= (a3)

4.2 Discussion: For further clarification, a practical application of the new notation will be

(3.567)

demonstrated on a large and diversed set of very big numbers, encompassing the widest possible
range of number cases that can be written in this notation, as shown in the following Table 1.
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Table 1: A set of detailed examples written by Al-Ossmi’s arrow- free notation:

Al-Ossmi’s notation Interpretation
102 1072 = 102 = 100
103 10 11 2 = 10'° = 10,000,000,000
103 10T3=10T10710
104 101T4=1017T10710T10
103 10113 = 101110 1T 10
108 10716 = 10-6-2
103! 10 17 11, This is simply 10 raised to the power of 11.
109* 10 =101(413)=10T64= 10— (64) > 1
33 313 =(31313)= (7,625597,484,987)
42 = 44 AMT2 =4M4 =(4147414)=44"
53 5T14 = 5115177 (517 5),itis a tetration of 5 repeated 4 times.
33 Graham's Number G:
33 =3-53-4
3%
" Gpy1 = 3160 3 starting from G; to Gg,
3% — Gn . — 663
63 Gpy1 = 35", for 64 steps. Gezi1 = 35
36, 3106+ 10 = 3 - 10 - Gy
5%, 51344 =5-54-34
300
5(‘”1 ) 513% (411 1309) = 55 (411 - 300 - 12) - 34
34
2(3425) (3425)
10; 1010 =107101(3141215)
6.12.200.3 3
10 10" =101(6112120013)
Al-Ossmi’s notation Interpretation

2001
4
3434025

103.4.3402.5.3.4.2001

= 8T(3T(4T(3402T5T3T4T2001)))
101010303 101110110 7303 =10 11 (10110 T 303)

1001°° = 1001000 1001000 — 10010%

100; 100100w0w°m0

1004 = 100412 100100100

3x10.(3,000,000,003
103X104 )

10 71 (3 x 10 T 3,000,000,003)

Let's apply the new Al-Ossmi’s free arrows notation in case of a2¢ to describe such the

number:a(aac). The given number is a power tower with the base a and height 3 exponents,

with the topmost exponent being c. From the notation definition, the height or number of

iterations in the power tower is b, and n is the level or number of arrows (exponentiation depth).
Example and interpretation: a2’ “°P**s °/ e 2 (P coviesof ae,

Base (a) = 10

Height (b): The height of the power tower here includes the topmost exponent and any

additional exponents as iterations; (a®):
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12
Since the topmost exponent is 10(1010 ) we adjust the height to reflect this deep nesting.
Level (n): Since this is straightforward exponentiation (second level of up-arrow), n = 2.
We describe it in a notation reflecting (3(12)) height, combining the depth and extending

beyond simple iteration count. If we consider it as an iteration extending beyond the simple

12
height, we express it as: 1010" = 103“” = 10312,
This flexibility of Al-Ossmi’s notation with forms; a2< or a2%¢/9™" allows for acompact

and structured way to represent extremely large numbers. These (b. c.d.e) are components to
describe complex and extended depth and extend the depth further, representing additional
layers of power towers or nested operations. By accurately reflecting the base, height (with
nuanced depth like b.c.d, indicating an extended height in the power tower), and level of
exponentiation, it simplifies understanding and interpreting large numbers. The use of multiple
components separated by dots allows for a detailed and nuanced representation of the structure
of the large number. This notation captures the nuances of the structure of these numbers,
including the base, height, depth, and level of operations, making it easier to understand and
work with extremely large values.

The original estimate is then when (n > 1), the value of b indicates to the tetration of the

base, a. More precisely, the examples:
23=213=123=8,
whereas; 23 = 2113=21(212) = 22 =16
notethat; 23 = 2113 =21 (21 (21212) =21 (2 " (222))
Therefore, compared with notations such as Conway’s chained and Knuth’s, the value of n
is related to the number of arrows, while it is by Al-Ossmi’s notation indicates that we deal
with a tetration process, thus value of n in Al-Ossmi’s does not help to determine the exact

value of the number. Al-Ossmi’s arrow-free notation easily helps to write out extremely large

power towers, as it is listed in Table 2 and 3.

Table 2: Systems of key Notations for Arithmetic Operators.

Arithmetic Standard | Ackermann’s | Knuth’s | Conway’s | Al-Ossmi’s
Exponentiation a’b ack(a,b,2) alh a->b-1 a?
Tetration bg ack(a,b,3) a™Mb |a-b-2 ab
Pentation bra ack(a,b,4) a™tb |a—>b—3 al
Hexation - ack(a,b,5) a™tb|la—-b—-4 al
Fundamental rule - ack(a,b,n) a™b |a>b->n ab
Where:

a, b, n are positive integers, hence:
a is the base number,

b copies of a,

n is the arrow number.

e —
Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

58



https://isnra.net/index.php/kjps
mailto:kjps@uoalkitab.edu.iq
mailto:kjps@uoalkitab.edu.iq

Al-Ossmi LHM. / Al-Kitab Journal for Pure Sciences (2025); 9(2):43-61.

Table 3: Al-Ossmi’s free arrows notation of a set of extremely huge numbers in form of titration

exponential express.

Number Name Exponential Notation Al-Ossmi’s notation
Skewes number 1010* 1033
Pentalogue 01olﬂ‘°w 103
Millyllion 102" 1021002
Gigillion 1,(3X103000,000000+3 102*103'000’000'""“3
Ecetonplex 1010°% 102303
Heskironduplex 10102%° 103600
Googolduplexichime 10102"" 1031000
Guppyduplexitoll 10102%" 1032000
Googolduplexibell 1010 1035000
Millinillion 103003 103003
Millinillinillion 103000003 103000003
Hepta-taxis 10 111 7 10}
Hexa-taxis 10 111 6 108
Penta-taxis 10 1115 103
Boogafive 51115 53
Tetra-taxis 51114 54
Gigaexpofaxul 10 11 (5 + 98) 105+°9)
Two 271 21=21=2

5. Conclusions

In this paper, we introduce a novel notation for expressing extremely large numbers, named
Al-Ossmi’s notation after its creator. This notation aims to compactly represent large numbers
by providing a clear structure that shows the base, the level of iteration, and the depth of the
operation. By doing so, it offers an efficient and unambiguous method for handling vast

numerical values, making it a valuable tool for mathematicians and computer scientists.

Al-Ossmi’s arrow-free notation is defined as; a2 , a2 , or a2<4¢  where:
e a: The base number.
e b,c,d,e etc.: The number of iterations or the height of the power tower.
e n: The level of operation or the number of arrows in Knuth's notation.
The original estimate is then this notation can be extended to include more complex
structures, such as a2 , a2< , or a2%*/9  to represent additional levels of nested operations,

where d and c, are variables. Al-Ossmi’s arrow-free notation simplifies the representation of

very large numbers by using a compact form that corresponds to (a T b) in Knuth's notation
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and a - b — n in the Conway's chained arrow notation. It combines these notations into a

concise and easily readable format, reducing the complexity and length of numerical
expressions. This notation is more standardized and better recognized within the mathematical
community, making it effective for communicating and working with extremely large numbers.
It is less cumbersome than writing multiple up-arrows or chaining arrows and is easy to write
and understand once the rules are clear. To facilitate the adoption of Al-Ossmi’s notation,
detailed documentation and examples are provided. This includes practical applications in
various fields such as physics, astronomy, and large number theory, where extremely large
numbers are common. Al-Ossmi’s arrow-free notation utilities in different fields, in physics or
astronomy, this notation can simplify expressions and calculations involving vast quantities. In
combinatorial mathematics or proofs involving large number theory, it provides clarity and

precision.
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