https://doi.org/10.32441/kjps.05.02.p1

Al-Kitab Journal for Pure Sciences

ISSN: 2617-1260 (print), 2617-8141(online) www.kjps.isnra.org

Transmission of dipolar substituent effects: ionization of a series 3-(7-substituted-1-naphthyl) propynoic acid (E)-3-(7-substituted-1-naphthyl) propenoic acids and their Esterification with Diazodiphenylmethane

Khalaf D. F. Ghadir *1, Sameerah Saadoon Mustafa², Ghaidaa Neamah Kadhim², Hadeel Ahmed Hasan²

¹Department of Optics Techniques, Bilad Alrafidain University College

²Middle Technical University

Citation: Khalaf D.F., Mustafa S.S., Kadhim G.N., Hasan H.A. Transmission of dipolar substituent effects: ionization of a series 3-(7-substituted-1-naphthyl) propynoic acid (E)-3-(7-substituted-1-naphthyl) propenoic acids and their Esterification with Diazodiphenylmethane. Al-Kitab Journal for Pure Sciences (2021); 5(2): 1-8. DOI: DOI: https://doi.org/10.32441/kjps.05.02.p1

Keyword

Esterification, Ionization, Hydrolysis, Substitu effect, Field effect.

Article History

Received 02 Apr. 2021 Accepted 20 June. 2021 Available online 19 Nov. 2021

©2021. Al-Kitab University. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/

Abstract:

Alkaline hydrolysis rates coefficients for the series of methyl 3-(7-substituted-1-naphthyl) propynoate was calculated in 70% v/v dimethylsulphoxide-water at various temperatures (25,30,40, and 50°C). The pKa values of 3-(7-substituted-1-naphthyl) propynoic acid and (E)-3-(7-substituted-1-naphthyl) propenoic acid calculated in 80% w/w 2-methoxyethanol-water at room temperature (25.0°C). logk2 of esterification rate coefficients for 3-(7-substituted-1-naphthyl) propynioc acid and (E)-3(7-substituted-1-naphthyl) propenioc acid with DDM have been measured at 30.0°C. Reversed substituent dipolar effects were found in the ionization reaction. In the esterification reaction with DDM the result show similar but reduced substituted effects. Rate retardations was found in the alkaline hydrolysis. It could be result from steric effect or reversal of substituent dipolar effect with a combination of steric effect.

Keywords: esterification, ionization, hydrolysis, Substituent effect, Field effect.

Corresponding Author: dr.khalaf53@gmail.com *

Web Site: www.uokirkuk.edu.iq/kujss E. mail: kujss@uokirkuk.edu.iq

1

دراسة تأثير الانتقال القطبي للمجاميع المعوضة في تفاعلات التأين والاسترة للاحماض الكاربوكسيلية -1 – معوض -1 – ثنائي) حامض البروباليك و -1 – معوض -1 – نفثايل) حامض الأكربليك.

خلف درویش فاضل 1، سمیرة سعدون مصطفی 2

غيداء نعمة كاظم2، هديل احمد حسن2

قسم تقنيات البصريات- كلية الرافدين الجامعة¹، المعهد الطبي النقني في المنصور - الجامعة التقنية الوسطى²

الخلاصة

قيست قيم ثابت التأين للأحماض الكاربوكسيلية 2 - (7 - معوض - 1 - ثنائي) حامض البروباليك و 2 - (7 - معوض - 1 - ثنائي) حامض الأكريليك عند درجة حرارة الغرفة 2 - ميثوكسي ايثانول (80% وزنا) عند درجة حرارة الغرفة 2 - ميثوكسي ايثانول (80% وزنا) عند درجة حرارة الغرفة 2 - 0.0 عند درجات حرارية مختلفة) 2 - 0.0 عند درجات حرارية مختلفة 2 - 0.0 عند درجات حرارية عند در

وقيست ايضا معامل سرع تفاعل استره الاحماض الكاربوكسيلية مع DDM عند 30 °م.

أظهرت نتائج تاين الاحماض الكاربوكسيلية التاثير المعاكس للانتقال القطبي للمحاميع المعوضة في هذه الاحماض الكاربوكسيلية . اما في تفاعلات استره الاحماض الكاربوكسيلية كانت النتائج ايضا التاثير المعاكس للمجاميع المعوضة ولكن أضعف من تاثير ها في الاحماض الكاربوكسيلية. وقد وجد في تفاعلات التحلل المائي لاسترات الاحماض المقابلة الاعاقة لسرعة التفاعل، وهذا يمكن ان يفسر سبب التائير الفراغي والمعاكس للمجموعة المعوضة.

الكلمات المفتاحية: الاسترة، التأين، التحلل المائي، تأثير المجموعة المعوضة، تأثير المجال.

Web Site: www.kjps.isnra.org E-mail: kjps@uoalkitab.edu.iq

Introduction:

The objective of this study was to determine the reverse transmission of dipolar substituent effects. From previous work on transmission of dipolar substituent effect considered to be the fundamental of the prediction of molecular reactivity [1-10]. It is conceivable to explain clearly the polar effects of the transmission via path of direct field of electrostatic [1,2,6,7,10]. Studies [1,4,11,12] explained the substituent dipolar effects reverse by using the right design circumstances which is currently in the molecular reliable model, such a model (3-substituted propiolic acid) has been suggested 1st time by Roberts and carbon [13]. This "J-shaped "molecule is an excellence design and perfect for dipolar substituent transmission effects study as shown in systems below:

$$\begin{array}{c} \text{CO}_2\text{H} \\ \text{C}\\ \text{C}\\ \text{HC} \\ \text{C}\\ \text{C}\\$$

Two novel systems 3- (7 - substituted -1- naphthyl) propynioc acids and (E)- 3- (7 - substituted -1- naphthyl) propenioc acids has been prepared for the present study. The pka values of the acids and their rates of esterification with DDM (diazodiphenylmethane) has been measured to assess their reactivity.

Results and Discussion:

The values of Pka in table 1 of the acids ,3-(7-substituted-1-naphthyl) propynioc and (E) - 3 -(7-substituted-1-naphthylpropenioc in 80% w/w 2-methoxyethanol-water are shown.

Table 1. The PKa Values of 3-(7-substituted-1-naphthyl) propynioc acid and (E) – 3 -(7-substituted -1-naphthyl) propenioc acid 80%w/w at 25°C in the 2-methoxyethanol- water.

Acid	substituted	PKa ^a	∆PKa ^b
Propiolic	Н	4.45 (Lit. [11],	0.00
		4.42)	
	Br	4.82	-0.37
	Cl	4.84	-0.39
Acrylic	Н	6.69 (Lit. [11],6.71)	0.00
	Br	7.02	-0.33
	Cl	6.95	-0.26

a: PKa magnitude are regenerate in +0.02 unit.

b: $\Delta PKa = PKa(H) - Pka$ (substituted).

Web Site: www.kjps.isnra.org E-mail: kjps@uoalkitab.edu.iq

The pka value of the unsubstitued of the substituted phenyl (4.30 and 6.68) respectively [15] more acidic than unsubstitued acid of this series of novel compounds. Thus, there is no solvation steric effect is combined with change from the phenyl to 1-naphthyl group in both system (1) and (2).

For the (7-bromo-, and 7-chloro-) substituents are electron – withdrawing groups, which would be predictable to be more acidic, it is found in the present study acid weakening about 0.3 to 0.4 pka units. Therefore, the transmission of polar substituent effect in this both model systems (1) and (2) are reversed dipolar substituent effects are observed.

Esterification With Diazodiphenylmethane (DDM):-

The rate coefficients in the following table (2) of 3-(7-substituted-1-naphthyl) propiolic and (E)-3-(7-substituted-1-naphthyl) propenioc acids with diazodiphenylmethane in 2- methoxy ethanol at temperature 3 0.0 °C are shown. The rate-determining step of the reaction involves proton transfer from an acid to DDM [16].

Table 2._K2 (Rate coefficients) ^a for the esterification of acids with diazodiphenylmethane in 2-methoxyethanol at 30°C.

Acid	substituted	K ₂ (dm³.mol ⁻¹ .min ⁻¹)	Log K ₂
Propiolic	Н	16.5 (Lit. [11], 16.7)	1.217
	Br	10.2	1.009
	Cl	10.5	1.021
Acrylic	Н	0.733 (Lit. [11],0.729)	-0.135
	Br	0.648	-0.188
	Cl	0.660	-0.181

a: The mean of measurements is of at least two determinations, within $\pm 3\%$.

The transmission of dipolar substituent effect is the same reversal of the 3-(7-substituted-1-naphtyl) propynioc and (E)-3-(7-substituted-1-naphthyl) propenioc acids.

The Δ log 0.208 for 3-(7-bromo-1-naphthyl) propynioc acids in the first model system shows the normal substituent effect was reversed polar effect.

Therefore, in good agreement with a quantitave reversal of the transmission of polar substituent effect [17].

Alkaline Hydrolysis:-

In the following **Table 3** the rate coefficients are shown for the alkaline hydrolysis of the corresponding ester of substituted propynioc acid.

Table 3 the rate coefficients are shown for the alkaline hydrolysis of the corresponding ester of substituted propynioc acid

Substituent	K ₂ (dm ³ .mol ⁻¹ .min ⁻¹)				
	25.0 °C	30.0 °C	40 °C	50 °C	
Н	35.1	42.1(Lit. [11],43.8)	84.2	162.8(Lit. [11], 155.3)	
Br	15.9	19.2	37.2	74.4	
Cl	12.4	14.8	28.3	56.8	

a: Rate coefficients are regenerate to within $\pm 3\%$.

Web Site: www.kjps.isnra.org E-mail: kjps@uoalkitab.edu.iq

Steric effect can cause retardation of the rate. This retardation can cause reversal substituent effect or both of them (reversal substituents effect and steric effect) [18]

In **Table** (4) the activation parameters at 30.0°C are shown.

Table 4._Activation of parameters at 30°C, alkaline hydrolysis of the methyl 3 –(7 – substituted -1- naphthyl) propionates 70% (V/V) DMSO – water ^a.

Substituent	ΔH (Kcal.mol ⁻¹)	Δ S (cal.mol ⁻¹ .K ⁻¹)
Н	11.7	- 21
Br	12.3	- 12
Cl	12.2	- 13

a-Values of ΔS and ΔH are measured within $\mp 302~cal.~mol-1$ and $\mp 2~cal.~mol^{-1}$. K^{-1} , respectively.

The ΔH and ΔS effect noted in covenant with this explanation. The ΔH values are increased. It was reliable with a reversed dipolar substituents effect of 7- substituted [18]. In the ΔS values no significant changes as would be expected in the steric effect absence.

Experimental: The preparation of (E) -3- (1-naphthyl) propenioc acid and 3-(1-naphthyl) propynioc acid used in this study has been described by Byron L. west [14]. These compounds were synthesized by the following procedure. The 1-hydroxymethyl naphthalene has been oxidized to an aldehydes.

The aldehydes gave propenioc acids by reaction of Perkin. The propynioc acids were synthesized by bromination and dehydrobromination of the propenioc acids.

7- Bromo-1-naphthaldehyde:-

This compound was prepared by adding 7-bromo-1-hydroxymethylnaphthalene (7.9 g, 33.3 mmol) in anhydrous methylene chloride (15ml) in many portion to the pyridinium chlorochromate (10.8 g, 0.1mol) in anhydrous methylene chloride (100 ml), was stirred for 3 hours. Dry diethyl ether was added and the clear liquid from the gum was decanted.

The precipitate product has been washed by (50 ml) of dry diethyl ether where upon it resultant with a black granular. By passing through a silica gel column was purified the crude solution. It was eluted with (15 ml) of dry diethyl ether. The yellowish solution was recrystallized from petroleum (b.p.60-80 °C) to give the aldehyde as colorless needles (6.2 g, 78.5%), m.p.83-84 °C,

Anal.calcd. for C₁₁H₇OBr:(C, 56.2; H, 3.0; 0, 6.8; Br, 34.0%)

Found: (C, 56.3; H, 2.9; 0, 6.9; Br, 33.9%).

7- chloro -1- naphthaldehyde :-

This compound was synthesized by the previous method as shown above. It gave the colorless needles (5.8 g, 73.4%), m.p. 93-94°C.Anal. Calcd. For C₁₁H₇OCl:

(C, 69.3; H, 3.7; 0, 8.4; Cl, 18.6%)

Found: (C, 69.1; H, 3.72; 0, 8.6; Cl, 18.5)

E-3-(1-naphthyl) propenioc acid:

The compound synthesized by using perkin reaction [14] to give the acid m.p. 207-208 °C (lit. [14], 207.5 °C).

3-(1-Naphthyl) propynioc acid:-

This compound was synthesized by the following sequence. The ethyl (E)-3-(1-Naphthyl) propenoate was prepared from (E)-3-(1-Naphthyl) propenioc acid. The ethyl ester was brominated and the dehydrobromination by alcoholic potassium hydroxide gave 3-(1-Naphthyl) propynioc acid, m.p. 137-139°C (lit. [14], 138-139°C)

E-3-(7-Bromo-1-naphthyl) propenioc, E-3-(7-chloro-1-naphthyl) propenioc, 3-(7-Bromo-1-naphthyl) propynioc and 3-(7-chloro-1-naphthyl) propynioc.

Acids was prepared with the previous method using the naphthyl aldehydes. The melting points, elemental analysis and the solvents of recrystallization for each acid as in table5. The spectra of infrared (IR) of the ester are shown in table6.

Table 5. Physical constants for the propynioc and propenioc acids.

					Foun	d (%)		Reaui	res (%)	
substituent	m.p	Lit.m.p.	Formula			(/5)			(/5)	Recrystallization solvent
substituent	°C	°C		С	Н	other	С	Н	other	solvent
		•	-substituete	d-1-na _l	phthy	l) propiolic	acids.			
Н	137-138	138-139 ^b	C ₁₃ H ₈ O ₂	-	-	-	-	-	-	
Br	162-163	-	C ₁₃ H ₇ BrO ₂	56.6	2.5	29.0(Br)	56.8	2.6	29.1(Br)	Chloroform-ethanol
CI	154-155	-	C ₁₃ H ₇ ClO ₂	67.8	3.0	15.3(CI)	67.7	3.1	15.4(CI)	Chloroform-ethanol
		Methy	/I3-(7-substit	ueted	-1-na	phthyl) pro	piolat	es		
н	b.p.121 at 0.5mmhg	b.p.120 at 0.5mmhg ^b	C ₁₄ H ₁₀ O ₂	-	-	-	-	•	-	
Br	64-65	-	C14H9BrO2	60.2	3.2	27.3 (Br)	58.2	3.1	27.6(Br)	Light petroleum ether(60-80°C)
CI	71-72	-	C ₁₄ H ₉ ClO ₂	68.4	3.6	14.5 (CI)	68.7	3.7	14.5(CI)	Light petroleum ether(60-80°C)
E-3-(7-substitueted-1-naphthyl) acrylic acids										
Н	208	207.5 ^b	C ₁₃ H ₁₀ O ₂	-	-		-	-		
Br	236	-	C ₁₃ H ₉ BrO ₂	56.2	3.2	29.6 (Br)	56.3	3.3	28.8(Br)	Acetone-ethanol
CI	228	-	C ₁₃ H ₉ ClO ₂	66.8	3.7	15.2 (CI)	67.1	3.9	15.2(Cl)	Acetone-ethanol

a-Ref.14, b-Ref.11.

Table 6. Infra-red (IR) spectroscopy properties of methyl 3 - (7- substituted - 1 - Naphthyl) propiolates^a.

Cubatituant	Ester carbonyl frequency,	Triple bond frequency		
Substituent	$V_{\rm max}$ (cm ⁻¹)	V _{max} (cm ⁻¹)		
Н	1725 (1731) ^b	2212		
Br	1728	2226		
Cl	1729	2224		

a: Spectra obtained in nujol mull and measurements reproducible to ∓ 1 cm⁻¹. b: Shoulder.

Conclusion:

In the present study was found, the transmission of substituent dipolar effect shows best understood to explain the transmission of direct field effects, σ - inductive and π -inductive effects.

For aromatic systems, π -inductive effect is more significant than the σ -inductive effect.

We suggest to synthesized new model system which can show the border line condition of the separation of inductive effect and the direct field effect through the molecular cavity.

Reference

- [1] Keith Bowden, "The Transmission of Polar Effects", Candian Journal of chemistry, 41,2781 (1963).
- [2] Keith Bowden, D.C.Perkin." The Transmission of polar Effects: IV, the kinetics of Esterfication with Diazo Diphenylmethane of Substituted Heterocyclic carxylic Acids ", candian Journal of Chemistry, 44, 1493-1499 (1966).
- [3] G.P.Schiemenz, "Zumelektronischen effect von $x-cH_2-$ gruppen.", Tetrahedron, 27, 5723-573 (1971).
- [4] Keith Bowden and Khalaf D.F.Ghadir. "Transmission of polar effects. part 21. Alkaline hydrolysis of the 2⁻ and 4⁻ substituted 2-methoxycarbonyldiphenyl acetylenes and (z)-2⁻ and-4⁻ substituted 2- methoxycarbonystilbenes and the ionization and esterification with DDM of the acids of the latter series. ", J.chem.soc.,perkin Trans, 2:8.1333-1338 (1990).
- [5] R.W. TAFT., "Insteric effects in organic chemistry, chap.13", Edited by M.S. Newman, Jhon wiley and sons, Inc., New York. (1956).
- [6] L.P. HAMMETT, " physical organic chemistry, chap.7. " Mc Graw Hill Book Co., Inc.New York (1940).

- [7] O.Exner, s. Bohm, "Theory of substituent Effects: Recent advances", current organic chemistry, 10(7), 763-778(2006).
- [8] Velayudhan V.Divya, Fareed Bhasha Sayyed, and Cherumuttathu H. Suresh, "Substituent Effect Transmission Power of Alkyl Alkenyl, Alkynyl, phenyl, Thiophenyl and Polyacene spacers.," a European Journal of chemical physics and physical chemistry, 10, 105(2019).
- [9] Xiang zhang. XintongWan, Ying Cong, Xiaohua Zhen, Qiao Li, Daisy Zhang-Negrerie, Yunfei Du, and Kang Zhao, "Lactonization of 2-Alkynylbenzoated for the Assembly of Isochemonones Mediated by BF₃. Et₂O ", Journal of organic chemistry, 84,10402-10411(2019).
- [10] Geetha S Remya and Cherumuttathu H. Suresh, "Quantification and Classification of substituent effects in organic chemistry: atheoretical molecular electrostatic potential study.", phys.chem.chem.phys.,18,20615-20626(2016).
- [11] Keith Bowden and Mahmood Hojatti, "Transmission of polar effects. Part 18. Ionization and Esterification with DDM of a series of 3-(8-substituted-1-naphthyl) propiolic acid (E) -3-(8-substituted-1-naphthyl) acrylic acids and the Alkaline hydrolysis of the Methyl Esters of the Former series.", J.chem.soc.perkin Trans,2,1197-1200(1990).
- [12] Roland Golden and Leon M.stock, "Dissociation Constants of 8-substituted 9,10 Ethanoauthracen-1-Carboxylic acids and Related compounds. Evidence for the field Model for the polar Effect.", J.Amer.chem.soc.,94(9),3080-3088(1972).
- [13] J.D.Roberts and R.A.Carboni, "Electric Effect of substituents Groups. Reactivities of substituted phenyl propiolic Acids.", J.Amer.chem.soc.,77,5554(1955).
- [14] Byron L West," The action of acetic anhydride of alph naphthyl propiolic acid", j.Amer.Chem.Soc.,42(8),1656-1669(1920).
- [15] W.Simon G.h. lyssey, A.Morikofer and E.Heilbronner,"Zusammenstellung Von Scheinbaren Dissoziotions –Konstantent in Losungsmitte Lsystem Methylcellosolve/Wasser", juris veriag, Zurick,1,(1959). ibid, Helv.Chem. Act.,40,1918(1957).
- [16] M.R.J. Deck, "Estimation of steric effect", j.chem.ed., 49,600,(1972).
- [17] A. Buckley, N.B.Chapman and J.Shorter,"The Separation of polar and steric effects", j,chem.soc.B,195(1969).
- [18] N. Chapman, j.shorter and J.H.P.Uttley,"the separation of polar, steric, and resonance effects", j.chem.soc.,3252-3260(1963).