https://doi.org/10.32441/kjps.06.01.p5

Al-Kitab Journal for Pure Sciences

ISSN: 2617-1260 (print), 2617-8141(online) www.kjps.isnra.org

Association between ICSI cycle outcome and response in women with infertility

Sara Samir Sadoon^{1*}, Amal Abdulwahid Mohammed², Ali Ibrahim Rahim³

^{1*}Kirkuk Health Directorate, Iraq
²Lecturer at higher institute for diagnosis of infertility and assisted reproduction techniques, Iraq
³Al-Ameed University, College of Medicine; Al-Kafeel Specialized Hospital, IVF Center; Karbala, Iraq

*Corresponding Author: sara.samir@ierit.nahrainuniv.edu.iq

Citation: Sadoon SS, Mohammed AA, Rahim AI. Association between ICSI cycle outcome and response in women with infertility. *Al-Kitab Pure Sci KJPS*. 2022; 6(1): 54-64. https://doi.org/10.32441/kjps.06.01.p5

Article History

Received Accepted Available online May 3, 2022 August 12, 2022 September 20, 2022

©2021. Al-Kitab University. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/

Abstract:

Background: Infertility is the inability to achieve a clinical pregnancy after 12 months of regular and unprotected sexual activity. Increases in child-bearing delay and maternal age at first pregnancy significantly impact the rise of age-related infertility and the demand for treatment using assisted reproduction techniques (ART). As a result, many women with a low ovarian reserve and a poor ovarian response (POR) to conventional stimulation seek medical assistance at infertility clinics. Aim: The study aimed to evaluate the quality of oocytes and embryos, as well as the rates of conception, in infertile women who were candidates for fresh intracytoplasmic sperm injection between good and poor-responder women (ICSI). Patients and methods: The study was conducted on 45 infertile women undergoing ICSI at the High Institute for Infertility Diagnosis and Assisted Reproductive Technologies/ Al-Nahrain University/ Baghdad/ Iraq from October 2021 to April 2022, regardless of whether they had previously undergone ICSI. The morphology of the oocytes and the quality of the resulting embryos were assessed. The patients' ages ranged from 20 to 42 years old. There was primary and secondary infertility ranging from one to 20 years. Every couple had a basic reproductive assessment. The antagonist protocol was used for all infertile females. All females had their

Web Site: www.uokirkuk.edu.iq/kujss E. mail: kujss@uokirkuk.edu.iq

serum levels of AMH, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and oestradiol (E2) measured on the second or third day of their cycle. The serum oestradiol (E2) level was re-measured on the day of the hCG injection. Results: The participants in the study were 32.6 ± 5.3 years old. The findings showed that 57.8% of the patients had a well response, and 24.4% of the women were pregnant. In those who became pregnant, anti-müllerian hormone (AMH) levels were significantly higher, and follicle-stimulating hormone (FSH) levels were noticeably lower (p> 0.05). The E2, LH, prolactin, and progesterone levels were not statistically different (P> 0.05). Conclusion: In conclusion, the findings revealed a positive relationship between response and ICSI outcomes in infertile women.

Keywords: ISCI, Infertility, AMH, Pregnancy Rate, Ovarian Response.

العلاقة بين نتائج دورة الحقن المجهري والاستجابة عند النساء المصابات بالعقم

ساره سمير سعدون1، آمال عبد الواحد محد2، على إبراهيم رحيم3

لمديرية صحة كركوك، العراق أمديرية صحة كركوك، العراق أالمعهد العالي لتشخيص العقم وتقنيات الإنجاب، العراق أحامعة العميد ، كلية الطب، مستشفى الكفيل التخصصي، مركز أطفال الأنابيب، كريلاء، العراق

*sara.samir@ierit.nahrainuniv.edu.ig

الخلاصة

يُعرَّف العقم بأنه عدم القدرة على تحقيق الحمل السريري بعد 12 شهرًا من النشاط الجنسي المنتظم وغير المحمي. تؤثر الزيادة في تأخر الإنجاب وعمر الأم عند الحمل الأول بشكل كبير على زيادة العقم المرتبط بالعمر والطلب على العلاج باستخدام تقنيات الإنجاب المساعدة (ART). يتسبب هذا في وجود عدد كبير من النساء ذوات احتياطي المبيض المنخفض واستجابة المبيض الضعيفة (POR) المتحفيز التقليدي يطلبن المساعدة الطبية في عيادات العقم. كان الهدف من الدراسة هو تقييم جودة البويضات والأجنة وكذلك معدلات الحمل لدى النساء المصابات بالعقم والمرشحات لحقن الحيوانات المنوية الجديدة داخل الهيولي في كل من النساء المستجيبات الطبيعيات والضعيفات (الحقن المجهري). المرضى والأساليب: أجريت الدراسة على 45 امرأة مصابة بالعقم يخضين الحقن المجهري في المعهد العالي لتشخيص العقم والتقنيات الإنجابية المساعدة الدراسة على 45 امرأة مصابة بالعولي من أكتوبر 2021 إلى أبريل 2022، بغض النظر عما إذا كانوا قد خضعوا سابقًا للحقن المجهري. تم تقييم مور فولوجيا البويضات ونوعية الأجنة الناتجة. تراوحت أعمار المرضى من 20 إلى 42 عامًا. كان هناك عقم أولي وثانوي يتراوح من عام إلى 20 عامًا، خضع جميع الأزواج لتقييم الإنجاب الأساسي. كان بروتوكول جميع الإناث المصابات بالعقم هو البروتوكول المضاد. تم قياس مستويات مصل الدم من AMH ، وهرمون (FSH) ، والإستراديول (ES) في اليوم الثاني أو الثالث من الدورة. تم إعادة قياس مستوى مصل وهرمون تحفيز الجريب (FSH) ، والإستراديول (ES) في اليوم الثاني أو الثالث من الدورة. تم إعادة قياس مستوى مصل

الاوستراديول (E2) في يوم حقن (HCG). النتائج: تراوحت أعمار المشاركين في الدراسة بمتوسط عمر 43.6 ± 5.5 سنة. وأظهرت النتائج أن 57.8% من المرضى لديهم استجابة طبيعية، وأن 44.4% من النساء كن حوامل. كان الهرمون المضاد للمولر (AMH) أعلى بشكل ملحوظ وكان الهرمون المنبه للجريب (FSH) أقل بشكل ملحوظ (0.05) في النساء الحوامل. لم تكن مستويات E2 و LH والبرو لاكتين والبروجسترون مختلفة إحصائياً (0.05) بينهما. الخلاصة: في الختام أوضحت النتائج وجود علاقة إيجابية بين الاستجابة ونتائج الحقن المجهري في النساء المصابات بالعقم.

الكلمات المفتاحية: ISCIK، العقم، AMH، معدل الحمل استجابة المبيض.

1. INTRODUCTION:

Infertility is a worldwide medical and financial issue that can cause stress and psychological distress. Infertility is the inability to obtain a clinical pregnancy following at least one year of regular unprotected sexual intercourse. Lifestyle has had a significant impact on the decline of fertility and the rise of assisted reproductive technologies in recent years [1]. Infertile patients undergoing in vitro fertilization (IVF) programs have a poor ovarian response in 9 to 24 % of cases [2]. Follicles that respond to FSH are fewer in women with a poor ovarian response, resulting in poor IVF outcomes and presenting a significant challenge to clinicians worldwide [3]. Several standards for determining POR have been proposed. However, none had been accepted as the international standard for defining POR until the development of Bologna standards in 2011[4]. Treatment of poor-responder patients during Assisted Reproductive Technologies (ART) is still a controversial topic [3]. The main goal is to determine the optimum treatment strategy for them depending on their ovarian capacity to enhance pregnancy potential while remaining clinically safe. It is most likely to reduce the risk of treatment failure, improve IVF outcomes, raise the chances of conception, provide proper counseling to patients, and set realistic expectations for ovarian stimulation outcomes. Increasing the gonadotropins or decreasing the GnRH agonist (GnRH-a) doses, as well as the use of adjunctive growth hormone, clomiphene citrate, aromatase inhibitors, or the use of a micro dose flare regimen with or without oral contraceptive pretreatment, or the use of a GnRH antagonist regimen, have all been suggested for the management of the poor-responder patient to improve the ovarian responses as well as the IVF outcomes [5]. The study's goal was to assess oocyte and embryo quality as well as conception rates in women with infertility who were candidates for fresh intracytoplasmic sperm injection in both well and poor responder women (ICSI).

2. Patients and Methods:

The study included 45 infertile women who underwent ICSI who underwent ICSI at the High Institute for Infertility Diagnosis and Assisted Reproductive Technologies/Al-Nahrain University/Baghdad, Iraq, from October 2021 to April 2021, regardless of whether they had previously undergone ICSI. The morphology of the oocytes and the quality of the generated embryos were assessed in the same institute's laboratory. The age of patients was between 20 and 42. Primary and secondary infertility were also present, with a period of 1 to 20 years. All couples underwent a basic reproductive assessment, which included a history, physical examination, hormone measurement, and the exclusion of uncontrolled endocrine problems, as well as sperm analysis for their partner. The protocol for all infertile females was the antagonist protocol. All patients had their serum levels of AMH, luteinizing hormone (LH), follicle-stimulating hormone (FSH), as well as oestradiol (E2) tested on the second or third day of their periods. The serum oestradiol (E2) level was re-measured the day after the hCG injection. The average age of the females included in this study was 20 to 42, had normal BMI, or weighed less than 30 kg, and had a partner with adequate normal sperm. Females with uncontrolled endocrine and systemic diseases, as well as those who had a partner with severe oligospermia or azoospermia, were excluded from the study.

Methods: To discover the reason for infertility, each infertile couple who participated in this study had a thorough medical history and physical examination. Questions about medical history include medical history (thyroid illness symptoms, diabetes, hirsutism, weight gain or loss, nipple discharge, lower abdomen or pelvic pain, mumps history, medication allergies, oral contraceptive pill use, steroids, chemotherapy, radiation, and non-steroidal anti-inflammatory medications, etc.). Past surgical history includes (cesarean section, appendectomy, diagnostic or therapeutic curettage, thyroid surgery, abdominal surgery, etc). Menstrual history includes (age of menarche, length of cycle, character of menstrual cycle, and presence of dysmenorrhea). Past gynecological history includes a history of vaginal discharge, pelvic pain, previous exposure to pelvic inflammatory disease, and history of PAP smears, a history of marriage, date of marriage, coital timing and frequency, methods of contraception if present, etc. Fertility history includes the type, duration, causes, previous investigations, and treatments, including IVF-ICSI trials and their outcomes. Past obstetrical conditions include the following: a history of gravidity and parity; a history of pregnancy-induced hypertension, gestational diabetes, a miscarriage; vaginal bleeding; a previous history

of cervical cerclage; the birth of an abnormal child; and post-partum hemorrhage). Family history; includes a history of infertility, premature ovarian failure, diabetes mellitus, thyroid diseases, or congenital abnormalities, etc.). Social history includes occupation, smoking, alcohol, address, and animal contacts. Both partners underwent physical examinations, including body mass index (BMI), general, cardiovascular, abdominal, central nervous system, thyroid, and breast examinations. Gynecological examination, including vaginal and cervical abnormalities, discharge, and uterine size. The Hormonal Assay was used to assess ovarian reserve, whereas serum prolactin, progesterone, and 17 estradiol (E2) were all used to evaluate hypothalamic-pituitary-ovarian (HPO) axis function. Based on their ovarian response, women were divided into two groups. Women with a poor ovarian response to stimulation had a reduced follicular response and low levels of oestradiol (E2) to stimulation according to the "Bologna criteria" developed by the European Society of Human Reproduction and Embryology (ESHRE).

3-Result

Figure 1 depicts the distribution of study patients based on general characteristics. Patients in the study ranged in age from 23 to 42 years old, with a mean of 32.6±5.3 years old. However, the majority of participants (57.8%) were under the age of 35.

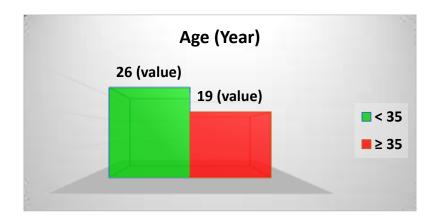


Fig 1. Distribution of participants by age

According to the findings, (57.8%) of patients had well responses, as shown in **Table 2**.

Table 1. Distribution of study patients by response

Response	No. (n= 45)	Percentage (%)
Poor responder	19	42.2
Well responder	26	57.8

Figure 2 shows the distribution of study patients by ICSI cycle outcome. The prevalence of pregnancy was (24.4 %).

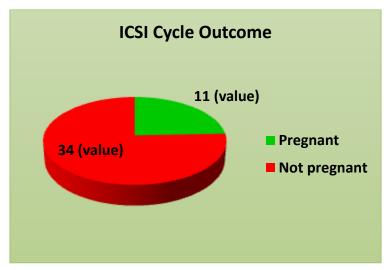


Figure 2: Distribution of study patients by ICSI outcome

Furthermore, pregnant women have considerably increased AMH and significantly lower FSH, as seen in **Table 2** (p<0.05). There were no statistically significant differences (p>0.05) between E2, LH, prolactin, and progesterone.

Table 2: Comparison of hormonal parameters based on ICSI cycle outcome

Hormonal Parameter	ICSI cycle outcome		
	Pregnant Mean ± SD	Not pregnant Mean ± SD	P - Value
Estradiol (pg/ml)	1590.01 ± 631.1	1261.13 ± 929.7	0.209
AMH (ng/ml)	2.85 ± 1.6	1.51 ± 1.1	0.032
FSH (IU/L)	6.97 ± 1.8	9.02 ± 2.6	0.01
LH (IU/L)	7.62 ± 2.4	7.22 ± 2.4	0.651
Prolactin (ng/ml)	13.21 ± 4.2	14.11 ± 5.1	0.321
Progesterone (ng/ml)	1.69 ± 1.1	1.71 ± 1.2	0.833

As shown in **Table3**, there was no statistically significant difference in response between pregnant and non-pregnant women (P=0.063).

Table 3: Association between ICSI cycle outcome and response

Response	ICSI cy	cle outcome	Total (%)	P - Value
	Pregnant (%)	Not pregnant (%)	n= 45	
	n= 11	n= 34		
Poor responder	1 (9.09%)	18 (52.9%)	19 (42.2%)	
Well responder	10 (90.91%)	16 (47.1%)	26 (57.8%)	0.027

Table 4 compares clinical indicators based on the outcome of an ICSI cycle. Those who got pregnant had a considerably larger mean number of grades I embryos (p = 0.03) than those who did not. All other clinical measures' means did not show statistically significant changes (P > 0.05).

Table 4: Comparison in clinical parameters by ICSI cycle outcome

	ICSI cycle outcome		
Clinical Parameter	Pregnant Mean ± SD	Not pregnant Mean ± SD	P - Value
Endometrial Thickness (mm)	9.36 ± 1.2	8.89 ± 1.3	0.306
No. of oocyte retrieved	12.9 ± 5.5	8.91 ± 6.5	0.07
No. of ruptured follicle	0.8 ± 1.31	0.54 ± 0.85	0.571
No. of GV stage oocyte	2.0 ± 1.9	0.82 ± 1.8	0.101
No. of M1 stage oocyte	2.4 ± 1.7	1.65 ± 1.8	0.25
No. of M2 stage oocyte	7.0 ± 4.1	5.34 ± 4.8	0.292
No. of embryos	5.9 ± 3.4	4.31 ± 3.5	0.217
No. of grade I embryo	4.1 ± 2.9	2.25 ± 2.1	0.03
No. of grade II embryo	1.3 ± 1.1	0.97 ± 0.92	0.39
No. of grade III embryo	0 ± 0	0.25 ± 0.78	0.059

4. Discussion

Despite advances in reproductive technology, significant proportions of patients remain poor responders (PORs) to aspects of oocyte retrieval and pregnancy rates [6]. According to the current findings, 57.8% of patients responded well to ART treatment programs, whereas 42.2% responded poorly. Furthermore, the prevalence of pregnancy was 24.4%. A previous

study estimated that the pregnancy rate was about 26%, which is highly approximate to the result of the present study [7].

In contrast to the results of Hassan et al.'s 2020 study, better results were published, with an overall prevalence of pregnancy after ICSI of 32.3% [8]. In other studies, 33 patients out of 90 in Kamkar et al.'s study in 2018 got pregnant (36%), only 27 of which were clinical pregnancies, giving a 30% clinical pregnancy rate [9]. In the Ashrafi et al. study from 2013, 1492 infertile women were enrolled and underwent ICSI, and the overall clinical pregnancy rate was 33.9% [10].

As shown in **Table 3**, there was no statistically significant difference in response between women who became pregnant and those who did not, as shown in **Table 3** (P = 0.063). Similarly, there was a non-significant response difference between those who became pregnant and those who did not [8]. Another study found a significant difference in ovarian response between the two groups, with clinical pregnancy rates of 14.8 percent in poorresponder women and 36.7 percent in normal-responder women [11].

In addition, in the current study, AMH, FSH, LH, prolactin, and E2 were measured for females' ovarian reserve assessment, which is critical before any ICSI trial [12]. Furthermore, this information can be used to analyze and advise couples before ICSI stimulation, as well as optimize stimulation techniques. The current study found that AMH levels differed significantly between pregnant and non-pregnant women (P< 0.05), with pregnant women having higher levels. Other studies have supported the current study's findings. [13, 14, and 15].

According to Gomez et al. (2016), women with low serum AMH levels can become pregnant. However, the findings revealed significant differences in FSH levels between pregnant and non-pregnant women, with the mean FSH being significantly lower in pregnant women than in non-pregnant women (P<0.05). Tulic also confirmed that lower basal FSH levels are associated with a positive assisted reproduction outcome [16]. According to Salama et al. [17], lower basal FSH levels are associated with chemical and clinical pregnancies.

Moreover, the current study showed no significant differences with E2, LH, prolactin, and progesterone ($P \ge 0.05$). In contrast, Al-Ghazali et al. found that E2 levels were higher in pregnant women than in non-pregnant women in 2013, indicating significant ovarian response [18]. Jiang et al. found that, despite having normal FSH, women with elevated basal E2 had poor pregnancy outcomes [19].

In a 2020 study, Pizarro et al. discovered that FSH, LH, and serum estradiol were higher, while serum progesterone was lower on the day of hCG in those who got pregnant versus those who couldn't after ICSI, with no significant relationship observed among these parameters (P>0.05). [11]. According to a different conclusion from a 2013 study by Ashrafi and other co-authors, the mean LH serum concentration in the pregnant group was significantly higher than that in the non-pregnant group (p = 0.04). Despite this, the serum concentrations of FSH and prolactin measured on day three did not differ significantly between the two groups (P>0.05) [10]. However, basal LH and E2 levels are not assumed to be appropriate markers for differentiating infertile patients who respond differentially to ovarian stimulation [19]. The ability to assess embryos quality is critical for decreasing the chance of multiple pregnancies and rising pregnancy rates by transferring the best embryos [21].

In the current study, there was no significant difference in oocyte quality, MII, or MI germinal vesicles between pregnant and non-pregnant women. However, pregnant women had a higher GI embryo count than non-pregnant women, which was statistically significant (P=0.03). The overall number of embryos, the number of GII embryos, and the number of GIII embryos were not significantly different $(P \ge 0.05)$. On the other hand, Sivrikoz discovered that high-quality embryos improve pregnancy rates [20]. According to a study published in 2020 by Hassan et al., there is no difference in total oocytes, aberrant oocytes, germinal vesicle oocytes, MII, or MI oocytes between pregnant and non-pregnant women (p>0.05). Furthermore, there was no discernible difference in the percentage of grade I, II, III, IV, as well as selected embryos between pregnant and non-pregnant women after ICSI (p>0.05)[8].

5- Conclusions

In conclusion, the study showed that oocyte quality affects the pregnancy rate. Furthermore, the results of ICSI have strong associations with AMH and FSH levels.

6- References

- [1] Wischmann, T 2020, 'Psychological Impact of Infertility and Assisted Reproduction 1', in, Handbook of Perinatal Clinical Psychology, Routledge, pp.61–81.
- [2] Bentov, Y., Hannam, T., Jurisicova, A., Esfandiari, N. and Casper, R.F., 2014. Coenzyme Q10 supplementation and oocyte aneuploidy in women undergoing IVF-ICSI treatment. Clinical Medicine Insights: Reproductive Health, 8, pp.CMRH-S14681.
- [3] Esteves, S.C., Roque, M., Bedoschi, G.M., Conforti, A., Humaidan, P. and Alviggi, C., 2018. Defining low prognosis patients undergoing assisted reproductive technology: POSEIDON criteria—the why. Frontiers in endocrinology, 9, p.461.
- [4] Younis, J.S., Ben-Ami, M. and Ben-Shlomo, I., 2015. The Bologna criteria for poor ovarian response: a contemporary critical appraisal. Journal of ovarian research, 8(1), pp.1-10.
- [5] Gat, I., Blanco Mejia, S., Balakier, H., Librach, C.L., Claessens, A. and Ryan, E.A., 2016. The use of coenzyme Q10 and DHEA during IUI and IVF cycles in patients with decreased ovarian reserve. Gynecological Endocrinology, 32(7), pp.534-537.
- [6] Safdarian, L., Aghahosseini, M., Alyasin, A., Samaei-Nouroozi, A., Rashidi, S., Shabani-Nashtaei, M., Najafian, A. and Lak, P., 2019. Growth hormone (GH) improvement of ovarian responses and pregnancy outcome in poor ovarian responders: a randomized study. Asian Pacific Journal of Cancer Prevention: APJCP, 20(7), p.2033.
- [7] Zargar, M., Najafian, M. and Zamanpour, Z., 2018. Relationship between follicular fluid and serum anti-Mullerian hormone levels and pregnancy rate in ART cycles. Perinatología y Reproducción Humana, 32(1), pp.3-8.
- [8] Hasan NA, Abdulhameed WA, Rahim AI. Correlation Among Obesity, Oocyte Characteristics, Embryo Characteristics and Maternal Plasma Folate Level in a Sample of Iraqi Women Undergoing Intracytoplasmic Sperm Injection (ICSI). Iraqi Journal of Embryos and Infertility Researches. 2020;10(1):1-19
- [9] Kamkar, N., Ramezanali, F. and Sabbaghian, M., 2018. The relationship between sperm DNA fragmentation, free radicals and antioxidant capacity with idiopathic repeated pregnancy loss. Reproductive biology, 18(4), pp.330-335.
- [10] Ashrafi M, Jahanian Sadatmahalleh S, Akhoond MR, Ghaffari F, Zolfaghari Z. ICSI Outcome in Infertile Couples with Different Causes of Infertility: A Cross-Sectional Study. Int J Fertil Steril. 2013;7(2):88-95.
- [11] Pizarro BM, Cordeiro A, Reginatto MW, Campos SPC, Mancebo ACA, Areas PCF, et al. Estradiol and Progesterone Levels are Related to Redox Status in the Follicular Fluid During In vitro Fertilization. J Endocr Soc. 2020;4(7):bvaa064-bvaa.
- [12] Scheffer, JAB, Scheffer, B, Scheffer, R, Florencio, F, Grynberg, M, & Lozano, DM 2018, 'Are age and anti-Müllerian hormone good predictors of ovarian reserve and response in women undergoing IVF?', JBRA assisted reproduction, vol. 22, no. 3, p. 215.

- [13] Gomez, R, Schorsch, M, Hahn, T, Henke, A, Hoffmann, I, Seufert, R, & Skala, C 2016, 'The influence of AMH on IVF success', Archives of gynecology and obstetrics, vol. 293, no. 3, pp. 667–673.
- [14] Sacha, C.R., Chavarro, J.E., Williams, P.L., Ford, J., Zhang, L., Donahoe, P.K., Souter, I.C., Hauser, R., Pépin, D. and Mínguez-Alarcón, L., 2020. Follicular fluid anti-Müllerian hormone (AMH) concentrations and outcomes of in vitro fertilization cycles with fresh embryo transfer among women at a fertility center. Journal of Assisted Reproduction and Genetics, 37(11), pp.2757-2766.
- [15] Mohammed, ZI & Qasim, MT 2021, 'Correlation of AMH and LH Levels in PCOS Patients with Pregnancy Rate', Annals of the romanian society for cell biology, pp. 945–951.
- [16] Tulic, L., Tulic, I., Bila, J., Nikolic, L., Dotlic, J., Lazarevic-Suntov, M. and Kalezic, I., 2020. Correlation of progesterone levels on the day of oocyte retrieval with basal hormonal status and the outcome of ART. Scientific Reports, 10(1), pp.1-9.
- [17] Salama, S., Sharaf, M., Salem, S.M., Rasheed, M.A., Salama, E., Elnahas, T. and Lotfy, R., 2021. FSH versus AMH: age-related relevance to ICSI results. Middle East Fertility Society Journal, 26(1), pp.1-8.
- [18] Al-Ghazali BS, Al-Jarrah DM. Factors Affecting Intra-Cytoplasm Sperm Injection (ICSI) and Pregnancy Outcome in the Fertility Center of Al–Najaf City. The Iraqi Postgraduate Medical Journal. 2013;12.
- [19] Kassab, A., Sabatini, L., Lieberman, G., Tozer, A., Zosmer, A., Davis, C. and Al-Shawaf, T., 2007. Does measuring early basal serum follicular lutinising hormone assist in predicting In vitro fertilization (IVF)/Intracytoplasmic sperm injection (ICSI) outcome?. Reproductive Biology and Endocrinology, 5(1), pp.1-6.
- [20] Sivrikoz, Ts, Özgör, By, Bilgiç, Be, & Kutlu, Ht 2021, 'Investigation of factors affecting the success rates of in vitro fertilization followed by a failed cycle', Journal of istanbul faculty of medicine, vol. 84, no. 1, pp. 20–26.
- [21] Li, H., Xu, X., Jing, Y., Liu, L. and Wang, Y., 2020. Associations between a new day 4 embryo grading system and implantation rates in frozen embryo transfer (FET) cycles. Medicine, 99(42).