

Al-Kitab Journal for Pure Sciences

ISSN: 2617-1260 (print), 2617-8141(online)

https://isnra.net/index.php/kjps

Analysis of complete blood count and C-reactive protein with respect to COVID-19 patients co-infected with fungi in Anbar, Iraq

Mustafa Jaber Hamadalla*1, Abbas Obaid Al- janabi1, Hazim Ismail Ghazzay2

¹Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Iraq1
²Department of Internal Medicine, College of Medicine, University of Anbar, Ramadi, Iraq

*Corresponding Author: mus21m0005@uoanbar.edu.iq

Citation: Hamadalla MJ, Al- janabi AO, Ghazzay HI. Analysis of complete blood count and C-reactive protein with respect to COVID-19 patients co-infected with fungi in Anbar, Iraq. Al-Kitab Journal for Pure Sciences. 2023 Sep 20;7(2):40-49. Available from: https://doi.org/10.32441/kjps.07.02.p4.

Keywords: CBC, N/L, CRP, COVID-19, Fungi.

Article History

Received 01 Aug. 2023 Accepted 29 Aug. 2023 Available online 20 Sep. 2023

©2023. THIS IS AN OPEN-ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/

Abstract:

COVID-19 exhibits a systemic inflammatory response to heightened blood levels of complete blood count (CBC) and C-reactive protein (CRP) that are indicative of severe illness in microbial (bacteria and viruses) infections. We aimed to investigate the correlation between CBC and CRP levels during the first hospitalization and clinical outcomes in COVID-19 patients with fungal co-infection. This research involved 100 post-COVID-19 patients referred to Al-Shafaa Hospital in Al-Ramadi, Anbar province, from October 2022 to May 2023. Each patient had blood drawn to determine their total blood count and C-reactive protein titer. Even though only nine patients had high CRP levels, the current study found that patients had insignificantly (P< 0.05) higher CRP levels than controls. It was revealed that 39 out of 100 patients developed an elevated white blood cell count. In contrast, five patients acquired a high RBC count. Neutrophilia was found in 39 of the patients. Five patients developed lymphocytopenia. In contrast, 12 patients had a high lymphocyte count. CRP and N/L ratio significantly discriminate patients from control. In conclusion, the results of CBC and CRP were variable among COVID-19 patients co-infected with fungi. Nevertheless, CRP and N/L markers are reliable and sensitive predictors of clinical outcomes in patients with COVID-19.

Keywords: CBC, N/L, CRP, COVID-19, Fungi.

Web Site: https://isnra.net/index.php/kjps E. mail: kjps@uoalkitab.edu.iq

تحليل تعداد الدم الكامل والبروتين سي التفاعلي فيما يتعلق بمرضى كوفيد-١٩ المصابين بالفطريات في الأنبار، العراق

مصطفى جابر حمد الله"، عباس عبيد الجنابي، حازم إسماعيل غزاي ا

قسم الأحياء الدقيقة، كلية الطب، جامعة الأنبار، الرمادي، العراق آقسم الطب الباطني، كلية الطب، جامعة الأنبار، الرمادي، العراق

mus21m0005@uoanbar.edu.iq

الخلاصة

يُظهر كوفيد- 1 استجابة التهابية جهازية لارتفاع مستويات الدم في تعداد الدم الكامل (CBC) والبروتين التفاعلي (CBC) مما يدل على مرض شديد في العدوى الميكروبية (البكتيريا والفيروسات). نحن نهدف إلى در اسة العلاقة بين مستويات CRP أشاء الاستشفاء الأول والنتائج السريرية لدى مرضى كوفيد- 1 الذين لديهم أيضًا عدوى فطرية مصاحبة. شمل هذا البحث CRP أثناء الاستشفاء الأول والنتائج السريرية لدى مرضى كوفيد- 1 الذين لديهم أيضًا عدوى فطرية مصاحبة. شمل هذا البحث CRP أشاء الإستشفاء الأول والنتائج السريرية لدى مرضى كوفيد CRP أعلى إلى مايو CRP أعلى المرضى التفاعلي سي. على الرغم من أن تسعة مرضى فقط لديهم مستويات عالية من CRP فقد وجدت الدراسة الحالية أن المرضى لديهم مستويات CRP أعلى بشكل ملحوظ (CRP) من الضوابط. وكشف أن ما مجموعه CRP من أصل CRP من الموضى على عدد كرات الدم الحمراء مرتفع. تم العثور على العدلات في CRP من المرضى. أصيب خمسة مرضى بنقص اللمفاويات. في المقابل، كان لدى CRP مريضا ارتفاع في عدد الخلايا الليمفاوية. نسبة CRP أصيب خمسة مرضى كوفيد- 1 المصابين CRP من المرضى على ملامات CRP و CRP مثاباينة بين مرضى كوفيد- 1 المصابين بالفطريات. ومع ذلك، تعد كل من علامات CRP و CRP بمثابة تنبؤات موثوقة وحساسة للنتائج السريرية لدى المرضى المصابين بوا-CRP المصابين بوا-CRP من المرضى على علامات CRP و CRP مثابة تنبؤات موثوقة وحساسة للنتائج السريرية لدى المرضى

الكلمات المفتاحية: تعداد الدم الكامل، N/L، الالتهاب بروتيني التفاعلي، كوفيد- ١٩، الفطريات.

1. INTRODUCTION:

SARS-CoV-2 is an enveloped virus with a diameter of 100 nm and a mass of approximately one femtogram. Its genome consists of a linear single-stranded RNA, positive-sense with a length of about 29,800 base pairs, with $\frac{2}{3}$ encoding non-structural proteins and one-third encoding structural proteins, including membrane (M), envelope (E), nucleocapsid (N), and spike (S) proteins [1].

The liver produces C-reactive protein (CRP) upon the action of IL-6, and it is commonly used as a bioindicator of inflammation [2-4]. Multiple studies have established a link between elevated CRP levels and increased disease severity in COVID-19 patients, as well as in individuals with H1N1 influenza pneumonia [5]. COVID-19 is known to cause noticeable

demonstrations in the hematopoietic system, with common hematological abnormalities recognized in affected individuals. Platelets, lymphocytes, hemoglobin, eosinophils, and basophils have all exhibited marked decreases from the disease's initial stages, and these changes have been associated with disease severity and clinical outcomes. The growth and division of monocytes throughout the infection course of COVID-19 remain indeterminate, given that the SARS-CoV-2 infection appears to directly weaken adaptive immune responses against viruses. Moreover, an elevation in the level of neutrophils and the neutrophil-to-lymphocyte ratio (NLR) has been linked to progressive disease. The assessment of laboratory data at baseline and throughout the infection process may aid scientists in developing custom-made treatment approaches as well as providing thorough care to those who require it the most [6].

In this study, we aim to investigate the relationship between CRP concentrations at hospital admission and pathological findings in COVID-19 patients in Ramadi, Iraq, in a healthcare system of considerable size.

2. Materials and Methods:

2.1. Study group

A total of 100 post-COVID-19 patients coinfected with fungi (*Aspergillus and Candida*) referring to Al-Shafaa Hospital in Al-Ramadi, Anbar province were enrolled in this study for the period October 2022 to May 2023. Blood specimens were collected from each patient to assay the complete blood count and C-reactive protein titer.

2.2. Blood assays

2.2.1. Complete Blood Count

XN 350 Sysmex hematology analyzer was used to perform this test.

2.2.2. C-Reactive Protein

C-reactive protein titer was estimated as instructed by the manufacturer company (Fine Care, UK).

3. Statistical analysis

All experiments were performed in triplicate and data are expressed as mean and standard deviation. Kolmogorov-Smirnov and Shapiro-Wilk tests were performed to test the normality distribution of data. Categorical data were demonstrated as numbers (percentage); whereas the nonparametric data were demonstrated as median. Mann-Whitney and Kruskal-Wallis tests were employed to evaluate the differences among study groups medians. Chi-square was used to test the demographic parameters. Regarding CRP, the receiver operating curve (ROC)

analysis was performed to calculate the cut-off value, sensitivity, and specificity. The differences were considered significant when the P value \leq 0.05. These statistical analyses were done using GraphPad Prism 9.5.0 software.

4. Results and Discussion:

4.1. Frequency of CRP by co-infection with fungi

Even though only nine patients demonstrated high levels of CRP (>10 mg/L), the current study showed that patients developed insignificantly (P< 0.05) higher (6.624 \pm 3.914 mg/L) CRP levels than controls (4.544 \pm 1.9 mg/L), as it is presented in **Fig.1**.

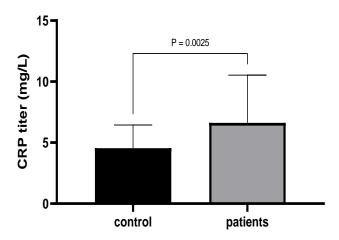


Fig. 1: Level of CRP in control vs. patients of COVID-19 presented with fungal infection. Mann-Whitney test P < 0.05.

Although the area under the curve (AUC) is 0.691 ± 0.051 (CI95% = 0.59 - 0.79, P= 0.03), CRP cannot discriminate the infection with *Aspergillus* or *Candida* with a cut-off value = 6.95 mg/L, due to the low sensitivity (0.384) but it can detect the negative cases very accurately (specificity = 0.96) as it is depicted in **Fig. 2**.

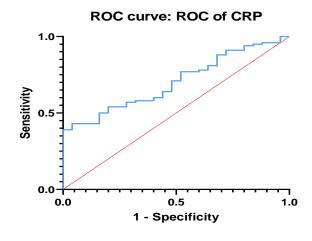


Fig. 2: Receiver operating characteristic (ROC) curve of CRP, AUC = 0.693, CI95% = 0.59-0.79, P= 0.028, Cut off value = 6.95, sensitivity = 0.384, specificity = 0.96

The CRP level significantly increased (P<0.05) compared to controls. Additionally, the CRP level exhibited a greater increase in the infection initial phase among the patient group (p<0.01). Nevertheless, CRP concentration in bacterial infections insignificantly differed (p > 0.05) from the fungal infection during the infection acute phase [7].

CRP has been shown to stimulate phagocytosis by phagocytes through a specific CRP receptor, which aids in the removal of various pathogenic microorganisms. A cytokine storm may be induced in COVID-19 pneumonia, which is linked with a significant death risk. Cytokines including IL-6 and TNF-α may drive the liver to create CRP, a biomarker that closely correlates with COVID-19 development and is highly increased during the early phases of inflammation. Systemic inflammation, in terms of CRP, is highly linked to venous thromboembolism, acute kidney injury, serious diseases, and hospital-related death rates in COVID-19 patients. Hence, evaluating inflammatory bioindicator-based methods for risk classification and treatment could improve patient outcomes [8, 9]. Regarding baseline laboratory data, the fungal positive group exhibited statistically significant differences in CRP, D-dimer, and serum ferritin levels (P< 0.05) compared to the fungal negative group, on the contrary, the CBC indices differed insignificantly (P> 0.05) [10].

4.2. Complete blood count according to co-infection with fungi

The result of CBC is grouped in **Table 1**.

Table 1: Frequencies of WBC total and differential count, RBC, hemoglobin, and platelets in patients of COVID-19 according to fungal isolates

Criterion	C. albicans	C. tropicalis	A. flavus	A. niger	Total
WBC ($< 4 \times 10^9 \text{ cell/L}$)	0	0	0	0	0
WBC (> 11×10^9 cell/L)	20	8	6	3	39
Neutrophil ($< 1.6 \times 10^9 \text{ cell/L}$)	0	0	0	0	0
Neutrophil (> 7×10^9 cell/L)	21	7	7	4	39
Eosinophil ($< 0.001 \times 10^9 \text{ cell/L}$)	0	0	0	0	0
Eosinophil (> 0.4×10^9 cell/L)	0	2	0	0	2
Basophil ($< 0.001 \times 10^9 \text{ cell/L}$)	0	0	0	0	0
Basophil (> 0.8×10^9 cell/L)	0	0	0	0	0
Lymphocytes ($< 0.8 \times 10^9 \text{ cell/L}$)	5	0	0	0	5
Lymphocytes (> 4×10^9 cell/L)	6	4	2	0	12
Neutrophil/lymphocyte ratio	16	3	5	3	27
Monocytes ($< 0.24 \times 10^9 \text{ cell/L}$)	1	0	0	0	1
Monocytes (> 0.7×10^9 cell/L)	43	11	9	6	69
RBC ($< 4 \times 10^{12} \text{ cell/L}$)	8	0	0	1	9
RBC (> $5.5 \times 10^{12} \text{ cell/L}$)	2	2	0	1	5
Haemoglobin (< 11 g/dL)	15	2	3	1	21
Haemoglobin (> 16 g/dL)	3	0	0	2	5
Platelets ($< 1.5 \times 10^{11} \text{ cell/L}$)	5	0	1	0	6
Platelets (> 4.5×10^{11} cell/L)	3	1	2	0	6

4.3. WBC total and differential count

The findings of the current work illustrated in Fig. 3 revealed that a total of 39 out of 100 patients developed high white blood cell count (> 11×10^9 cell/L); 20, 8, 6, and 3 of them were infected with *C. albicans*, *C. tropicalis*, *A. flavus*, and *A. Niger*, respectively. WBC levels in the fungal-infected group dropped during the beginning infection and acute phases when compared to the control group (p < 0.01) [7].

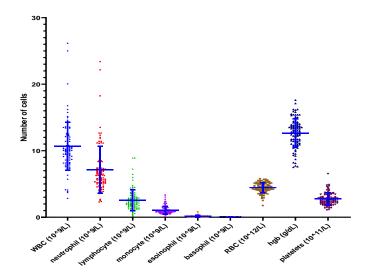


Fig. 3: Scatter plot of the frequencies of WBC total and differential count, RBC, hemoglobin, and platelets in patients of COVID-19 co-infected with *Aspergillus* or *Candida*. Horizontal bars represent mean ± standard deviation.

Neutrophilia was observed in 39 patients; 21, 7, 7, and 4 were co-infected with *C. albicans*, *C. tropicalis*, *A. flavus*, and *A. Niger*, respectively. Two of the patients who developed eosinophilia were co-infected with *C. tropicalis*. None of the patients developed basophilia.

Neutrophils play a crucial role in defending against fungal pathogens by migrating toward the invading microorganisms and eliminating them through phagocytosis, oxidative burst, and the release of neutrophil extracellular traps [11]. Meanwhile, there have been varying reports on eosinophil counts during COVID-19, and it remains unclear whether these changes are related to the primary disease process or a result of treatment-induced immunomodulation [12]. The microbial (bacteria, fungi, and viruses) cytoplasmic membrane contains phospholipids, which interact with the CD300a receptor on eosinophils [13].

Five patients developed lymphocytopenia ($< 0.8 \times 10^9 \text{ cell/L}$) all of them were co-infected with *C. albicans*. While 12 patients showed high lymphocyte count ($> 4 \times 10^9 \text{ cell/L}$), 6, 4, and 2 were co-infected with *C. albicans*, *C. tropicalis*, and *A. flavus*, respectively. Regarding monocytes, one patient developed monocytopenia ($< 0.24 \times 10^9 \text{ cell/L}$) and was co-infected

with *C. albicans*. While, 69 patients showed high monocyte count (> 7×10^9 cell/L), 43, 11, 9, and 6 were co-infected with *C. albicans*, *C. tropicalis*, *A. flavus*, and *A. Niger*, respectively.

Both nonspecific innate and acquired immunity, including neutrophils, macrophages, dendritic cells, lymphocytes, and monocytes, are important in host defense against congenital mycoses. Th1 lymphocytes secrete cytokines such as IFN-γ, IL-2, and IL-12, which induce cytotoxic cells and neutrophils to abolish fungal cells. Th2 lymphocytes, on the other hand, secrete cytokines such as IL-4, IL-6, and IL-10, which reduce cellular immunity by counterregulating the production of IL-2, IL-12, and IFN- γ and depressing macrophage activity. Cellular processes are also important in host responses to fungal infections, and T-lymphocyte malfunction and reduction in number are common in individuals with mycotic illnesses [14]. Monocytes and their descendants, such as macrophages and dendritic cells, play a variety of functions in the immune response to fungi. Monocytes detect fungus and activate signaling pathways that cause direct actions like as phagocytosis and cytokine generation. Monocytes are additionally able to deliver fungal antigenic components to generate adaptive immune responses [15].

The present results revealed that 16, 3, 5, and 3 patients co-infected with *C. albicans, C. tropicalis, A. flavus*, and *A. Niger*, respectively developed an N/L ratio above the control mean (4.435). C. albicans patients significantly outnumbered other patients.

Receiver operating analysis demonstrated a cut-off of 3.135 (AUC = 0.671, CI95% = 0.569-0.773, P= 0.008, sensitivity = 0.59, specificity = 0.76) for neutrophil/lymphocytes ratio (NLR) as depicted in Fig. 4.

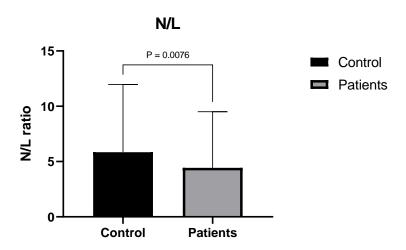


Fig. 4: N/L ratio in control vs. patients of COVID-19 presented with fungal infection. Mann-Whitney test P < 0.05.

Combining the NLR with the age variable can aid in risk stratification and guide the establishment of diagnostic and therapeutic procedures for COVID-19 patients. A high neutrophil-to-lymphocyte ratio indicates a poorer chance of survival, making risk categorization and management crucial for alleviating medical resource shortages and reducing the mortality rate of critically ill patients [16].

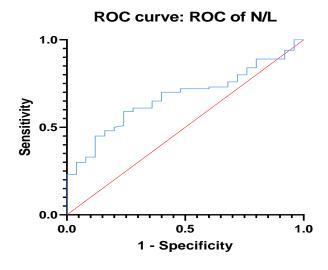


Fig. 5: Receiver operating characteristic (ROC) curve of N/L ratio, AUC = 0.671, CI95% = 0.569-0.773, P= 0.008, Cut off value = 3.135, sensitivity = 0.59, specificity = 0.76

4.4. RBC and hemoglobin

Regarding RBC, it was found that 9 patients had low RBC count ($< 4 \times 10^{12}$ cell/L), 8 of them infected with *C. albicans* and one patient with *A. Niger*. On the other hand, 5 patients developed high RBC count ($> 5.5 \times 10^{12}$ cell/L), 2, 2, and 1 patient were co-infected with *C. albicans*, *C. tropicalis*, and *A. Niger*, respectively. Concerning the hemoglobin results, it was found that 21 and 5 patients developed anemia (< 11 g/dL) and high (> 16 g/dL) hemoglobin concentration. Furthermore, 15, 2, 3, and 1 of those who developed low hemoglobin were co-infected with *C. albicans*, *C. tropicalis*, *A. flavus*, and *A. Niger*; whereas 3 and 2 of those presented with high hemoglobin levels were co-infected with *C. albicans* and *A. Niger*.

4.5. Platelets

The present findings revealed that 6 patients developed low platelet counts and another 6 developed high counts (**Fig. 5**). Out of the thrombocytopenia patients, 5 and 1 of them were coinfected with *C. albicans* and *A. flavus*, respectively. Nevertheless, 3, 1, and 2 patients with increased platelets were co-infected with *C. albicans*, *A. flavus*, and *A. Niger*, respectively.

Platelet count was reduced in the fungal-infected group in comparison to the control in the initial and acute phases of infection (P< 0.01). Platelet count was reduced in the bacterial-

infected group during the infection's initial and acute phases (p <0.01). Furthermore, the fungal infection group had a greater decline in platelets number than the bacterial infected group (P<0.01); nevertheless, in the infection acute phase, platelets count differs insignificantly between bacterial- and fungal-infected groups (P > 0.05) [7].

5. Conclusions

CBC and CRP levels varied among COVID-19 patients who were also afflicted with pulmonary aspergillosis and candidiasis. CRP and N/L indicators are similarly accurate and sensitive for predicting COVID-19 in-hospital outcomes.

Conflict of interests

The authors declare that there is no conflict of interest.

6. References

- [1] Singh D, Yi SV. On the origin and evolution of SARS-CoV-2. Exp Mol Med. 2021;53(4):537-47.
- [2] Petrilli CM, Jones SA, Yang J, Rajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966.
- [3] Tille PM. Bailey & Scott's Diagnostic Microbiology. 15 ed: Elsevier; 2021.
- [4] Morley JJ, Kushner I. Serum C-reactive protein levels in disease. Annals of the New York Academy of Sciences. 1982;389(1):406-18.
- [5] Luo X, Zhou W, Yan X, Guo T, Wang B, Xia H, et al. Prognostic value of C-reactive protein in patients with coronavirus 2019. Clinical Infectious Diseases. 2020;71(16):2174-9.
- [6] Palladino M. Complete blood count alterations in COVID-19 patients: A narrative review. Biochemia Medica. 2021;31(3):0-.
- [7] Yang YC, Mao J. Value of platelet count in the early diagnosis of nosocomial invasive fungal infections in premature infants. Platelets. 2018;29(1):65-70.
- [8] Luan YY, Yin CH, Yao YM. Update Advances on C-Reactive Protein in COVID-19 and Other Viral Infections. Front Immunol. 2021;12:720363.
- [9] Smilowitz NR, Kunichoff D, Garshick M, Shah B, Pillinger M, Hochman JS, et al. Creactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021;42(23):2270-9.

- [10] Negm EM, Mohamed MS, Rabie RA, Fouad WS, Beniamen A, Mosallem A, et al. Fungal infection profile in critically ill COVID-19 patients: a prospective study at a large teaching hospital in a middle-income country. BMC Infect Dis. 2023;23(1):246.
- [11] Urban CF, Nett JE. Neutrophil extracellular traps in fungal infection. Semin Cell Dev Biol. 2019;89:47-57.
- [12] Nair AP, Soliman A, Al Masalamani MA, De Sanctis V, Nashwan AJ, Sasi S, et al. Clinical Outcome of Eosinophilia in Patients with COVID-19: A Controlled Study. Acta Biomed. 2020;91(4):e2020165.
- [13] Gaur P, Zaffran I, George T, Rahimli Alekberli F, Ben-Zimra M, Levi-Schaffer F. The regulatory role of eosinophils in viral, bacterial, and fungal infections. Clin Exp Immunol. 2022;209(1):72-82.
- [14] Kurnatowski P, Kurnatowska AJ. Odpowiedź immunologiczna na zarazenie grzybami [The immune response to fungal infections]. Wiadomosci parazytologiczne. 2010;56(1):23–7.
- [15] Heung LJ. Monocytes and the Host Response to Fungal Pathogens. Front Cell Infect Microbiol. 2020;10:34.
- [16] La Torre G, Marte M, Massetti A, Carli S, Romano F, Mastroianni C, et al. The neutrophil/lymphocyte ratio as a prognostic factor in COVID-19 patients: a case-control study. European review for medical and pharmacological sciences. 2022;26(3):1056-64.