Approximate Solutions of Nonlinear Integral Equations Using the Cubic B-Spline Scaling Method
Main Article Content
Abstract
This paper examines a category of general nonlinear integral equations. These equations also include many special cases, such as functional equations and nonlinear integral equations of the Volterra type. In order to approximate the solutions to numerous physical, chemical, and biological issues, we implemented an approach that incorporates the fixed-point method and semi-vertical cubic scaling functions. We also obtain a numerical solution to the integral equation. Numerical examples illustrate the accuracy and validity of this method.
Downloads
Article Details
References
Arbabi F, Li FJJoSE. Buckling of variable cross-section columns: integral-equation approach. 1991;117(8):2426-41.
Hochstadt H. Integral equations: John Wiley & Sons; 1989.
Jerri AJ. Introduction to integral equations with applications: John Wiley & Sons; 1999.
Kanwal RP. Linear integral equations: Springer Science & Business Media; 2013.
Argyros IKJBotAMS. Quadratic equations and applications to Chandrasekhar's and related equations. 1985;32(2):275-92.
Deimling K. Non-linear functional analysis: Springer Science & Business Media; 2013.
Hu S, Khavanin M, Zhuang WJAA. Integral equations arising in the kinetic theory of gases. 1989;34(3-4):261-6.
Precup R. Methods in non-linear integral equations: Springer Science & Business Media; 2002.
Banaś J, Dhage BCJNAT, Methods, Applications. Global asymptotic stability of solutions of a functional integral equation. 2008;69(7):1945-52.
Aghajani A, Jalilian YJCiNS, Simulation N. Existence and global attractivity of non-linear functional integral equation solutions. 2010;15(11):3306-12.
Sommariva AJNA. A fast Nyström-Broyden solver by Chebyshev compression. 2005;38(1):47-60.
Petryshyn WJJoM, Mechanics. Projection methods in non-linear numerical functional analysis. 1967;17(4):353-72.
Pata V. Fixed point theorems and applications: Springer; 2019.
Maleknejad K, Torabi P, Mollapourasl RJC, Applications Mw. Fixed point method for solving non-linear quadratic Volterra integral equations. 2011;62(6):2555-66.
Maleknejad K, Nosrati Sahlan MJIJoCM. The method of moments for solution of second kind Fredholm integral equations based on B-spline wavelets. 2010;87(7):1602-16.
Maleknejad K, Nedaiasl KJC, Applications Mw. Application of Sinc-collocation method for solving a class of non-linear Fredholm integral equations. 2011;62(8):3292-303.
Maleknejad K, Karami M, Rabbani MJAm, computation. Using the Petrov–Galerkin elements to solve Hammerstein integral equations. 2006;172(2):831-45.
Maleknejad K, Almasieh H, Roodaki MJCiNS, Simulation N. Triangular functions (TF) method for solving non-linear Volterra–Fredholm integral equations. 2010;15(11):3293-8.
KtMAR S, SLOAN IJMC. A new collocation-type method for Hammerstein equations. 1987;48:585-93.
Kelley CJTJoIE. Approximation of solutions of some quadratic integral equations in transport theory. 1982:221-37.
Kaneko H, Noren RD, Padilla PAJJoC, Mathematics A. Superconvergence of the iterated collocation methods for Hammerstein equations. 1997;80(2):335-49.
Guoqiang HJJoc, mathematics a. Extrapolation of a discrete collocation-type method of Hammerstein equations. 1995;61(1):73-86.
Guoqiang H, Liqing ZJAm, computation. Asymptotic error expansion of a collocation-type method for Hammerstein equations. 1995;72(1):1-19.
Brutman LJNA. Applying the generalized alternating polynomials to the numerical solution of Fredholm integral equations. 1993;5:437-42.
Borzabadi AH, Fard OSJJoC, Mathematics A. A numerical scheme for a class of non-linear Fredholm integral equations of the second kind. 2009;232(2):449-54.
Atkinson KE. The numerical solution of integral equations of the second kind: Cambridge University Press; 1997.
Atkinson K, Han W. Theoretical numerical analysis: Springer; 2005.
Pour-Mahmoud J, Rahimi-Ardabili MY, Shahmorad SJAM, Computation. Numerical solution of the system of Fredholm integro-differential equations by the Tau method. 2005;168(1):465-78.
Maleknejad K, Arzhang AJAM, Computation. The numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel using the Taylor-series expansion and Galerkin method. 2006;182(1):888-97.
Dinghua XJJoSU. Numerical solutions for non-linear Fredholm integral equations of the second kind and their superconvergence. 1997;1(2):98-104.
Babolian E, Shahsavaran AJJoC, Mathematics A. Numerical solution of non-linear Fredholm integral equations of the second kind using Haar wavelets. 2009;225(1):87-95.
Maleknejad K, Karami MJAm, computation. Numerical solution of non-linear Fredholm integral equations by using multiwavelets in the Petrov–Galerkin method. 2005;168(1):102-10.
Hackbusch W, Sauter SAJAom. On the efficient use of the Galerkin method to solve Fredholm integral equations. 1993;38(4):301-22.
Xiao J-Y, Wen L-H, Zhang DJAM, Computation. Solving second kind Fredholm integral equations by periodic wavelet Galerkin method. 2006;175(1):508-18.
Atkinson KEJSJoNA. The numerical evaluation of fixed points for completely continuous operators. 1973;10(5):799-807.
Han GJBNM. Asymptotic error expansion for the Nyström method for non-linear Fredholm integral equations of the second kind. 1994;34(2):254-61.
Babolian E, Abbasbandy S, Fattahzadeh FJAM, Computation. A numerical method for solving a class of functional and two-dimensional integral equations. 2008;198(1):35-43.
Ebrahimi N, Rashidinia JJAM, Computation. A collocation method for linear and non-linear Fredholm and Volterra integral equations. 2015;270:156-64.
Biazar J, Ghazvini H, Eslami MJC, Solitons, Fractals. He’s homotopy perturbation method for systems of integro-differential equations. 2009;39(3):1253-8.
Rashed MJAM, Computation. Numerical solution of functional differential, integral, and integro-differential equations. 2004;156(2):485-92.
Rashed MJAM, Computation. Numerical solutions of functional integral equations. 2004;156(2):507-12.
Banaś J, Rzepka BJAML. An application of a measure of noncompactness in the study of asymptotic stability. 2003;16(1):1-6.
Burton T, Zhang BJAML. Fixed points and stability of an integral equation: nonuniqueness. 2004;17(7):839-46.
Borzabadi AH, Kamyad AV, Mehne HHJAM, Computation. A different approach for solving the non-linear Fredholm integral equations of the second kind. 2006;173(2):724-35.
Babolian E, Fattahzadeh F, Raboky EGJAM, Computation. A Chebyshev approximation for solving non-linear integral equations of Hammerstein type. 2007;189(1):641-6.
[Razzaghi M, Ordokhani YJMPiE. Solution of non-linear Volterra‐Hammerstein integral equations via rationalized Haar functions. 2001;7(2):205-19.
Sepehrian B, Razzaghi MJMPie. Solution of non-linear Volterra‐Hammerstein integral equations via single‐term Walsh series method. 2005;2005(5):547-54.